
Effective Performance Issue Diagnosis with
Value-Assisted Cost Profiling

Lingmei Weng, Columbia University
Yigong Hu, Johns Hopkins University
Peng Huang, University of Michigan
Jason Nieh, Columbia University
Junfeng Yang, Columbia University

A Real World Performance Issue in MariaDB

2

Profilers are often recommended
Server reads XXX LSN

In v10.3.22, MariaDB crash
recovery takes a long time

Top ranked functions

3

Output from Existing Profilers

available_mem = 0

• Top ranked functions are not the culprit
Problems

• No info about buggy values that cause the issue

… …

The diagnosis took 20+ days

20+ branches

Key Insights

Function costs alone are insufficient for performance diagnosis

Dataflow is necessary to understand root causes of performance issues

➡ a program variable’s values over time

➡ useful to calibrate raw costs and identify problematic code

4

vProf Workflow

5

1. Cost Profiling (GProf in libc.so)
2. Recording dataflow concurrently

at profiling for selected variables

 libVprof.so

Static analysis on source code

selected variables

Normal execution Normal profile

Cost calibration
Abnormal dataflow

available_mem, bb3,
WrongConstraint

recv_group_s
can_log_recs 82.73

variable, bb, patternadjusted costfunction

Performance issue
 Buggy profile buggy profile

value samples

cost histogram

normal profile

Debugging information
in binary executable

runtime locations

vProf needs to address three challenges:

✦Pre-profiling: select variables to minimize the overhead

✦Profiling: record value samples concurrently and efficiently at
profiling signal handler

✦Post-profiling: effectively leverage recorded samples for diagnosis

vProf Challenges

6

✦ Focus value recording in a component related to the performance issue

- e.g., storage/innobase/log

✦ Use static analysis to identify variables in code area that affects performance

Select Variables

7

s = b + 3*i;
if (i < a.min) goto Lerr
while (i < a.length) {
 i = i + 2;
 s = s + 6;
 goo(ptr, s, i);
}

- loop => induction variables- conditional expression => operands - function call => parameters

s = b + 3*i;
if (i < a.min) goto Lerr
while (i < a.length) {
 i = i + 2;
 s = s + 6;
 goo(ptr, s, i);
}

s = b + 3*i;
if (i < a.min) goto Lerr
while (i < a.length) {
 i = i + 2;
 s = s + 6;
 goo(ptr, s, i);
}

Access Selected Variables During Profiling

8

Selected
Variables

Profiling signal at PC_1
if(a…) {
Accessible
Variables set 1
}

Profiling signal at PC_2
while(a…) {
Accessible
Variables set 2
}

a is saved in register

a is moved to the stack
✦ Problems

- accessible variables at different PCs changes

- runtime locations for the same variable changes

✦ Solution
- Fast index the runtime locations of accessible variables from arbitrary PCs

✦ Typical cost profiling is done by
periodical sampling with signals

- Profiling signals are delivered at different
instruction addresses (PCs)

Efficient Recording of Value Samples

9

1

2

value of a, timestamp, PC_2

Values ….

DataFlow of Accessible Variables

3

Hash Table was prepared in binary analysis step

runtime locations of accessible variables at pc_2hash(pc_2)

Profiling signal at PC_2

while(a …) {
accessible variables
}

✦ Discount the cost of inherent costly functions

- We calculate two kinds of discounts

• (1) ranking discount; (2) variable discount

• (2) is critical

✦ Boost the cost of under-estimated functions

- little time but cause execution of other costly functions

Offline Cost Calibration with Recorded Samples

10

✦ Discount for inherent costly functions

- Compare to normal execution to identify inherent costly

Discount Calculation Needs A Baseline

11

Buggy execution
 foo - 50s
 …
 goo - 45s
 boo - 6s
 …

Normal execution
 foo - 49s
 …
 goo - 35s
 boo - 2s
 …

Compare

- Baseline needs a similar use case, not necessarily identical

✦ Same rankings in buggy execution and normal execution

Ranking Discount

12

Buggy execution
 foo - 50s
 …
 goo - 45s
 boo - 6s
 …

Normal execution
 foo - 49s
 ….
 goo - 35s
 boo - 2s
 …

✦ Similarity on distributions of values for variable var in function goo

Variable Discount

0

15

30

45

60

t1 t2 t3 t4 t5 t6 t7 t8 t9

13

0

1

2

0 30 60

Normal execution Buggy Execution

similar value distributions of var adjusted_cost(goo) = (1 - discount) * profiling_cost(goo)

Va
lu

e

Time Value

N
um

be
r o

f v
al

ue

Buggy execution
 goo - 45s
 boo - 6s
 …
 foo - 1s

✦Samples outside current program,
eg. dynamic libraries, are omitted.

✦Values of the variables accessible
from callers are also missed

Boost Under-Estimated Function Cost

14

Text section

dyn libs

Calls

Profiling signal PC

Virtually unwind(backtrace)

Virtual profiling PC

✓ Virtually backtrace the call stack

Buggy execution
 …
 goo - 9s
 boo - 6s
 foo - 1s

• Costly library function;
• Abnormal value samples

vProf Result for MariaDB Example

15

[1] recv_appply_hashed_log_recs

[445] recv_group_scan_log_recs

…

…

[3] recv_appply_hashed_log_recs
…

[1] recv_group_scan_log_recsDiscount

Bo
os

t

Function cost ranking in
GProf

Calibrated function cost ranking in
vProf

✦Besides cost calibration, vProf leverages the recorded value
samples to provide further debugging aid

✓Identify the abnormal variables for a function

✓Locate the code regions where abnormal values are
accessed

✓Infer potential performance bug patterns

Additional Debugging Aid

16

Abnormal Value for MariaDB Example

17

[1]. recv_group_scan_log_recs
adjusted_cost: 87.73
suspicious_variable: available_mem
 (abnormal_value: 0, location: bb3)…
bug_pattern: WrongConstraint

…

vProf debugging reportFunction cost ranking in
vProf

✦How effective vProf is?

✦What is the advantages of vProf compared to other tools?

✦ Is vProf efficient enough to be practical?

 Evaluate vProf

Evaluation Settings:

• Intel Core i5 and 48GB DRAM

• Apply vProf to real-world performance bugs via LD_PRELOAD

•No instrumentation to applications

18

Real-World Performance Issues

ID Apps Bug Description
B1 MariaDB Server crash recovery loops on the same log sequence number

(LSN) forever B2 MariaDB Performance drops when the size of dataset is larger than the size of
buffer poolB3 MaraiDB Deleting a table with CASCADE constraint is very slow

B4 MariaDB Slow start-up even when .ibd file vali dation is off
B5 MariaDB Checking the server status takes >10 seconds with 3M tables
B6 Apache httpd Output filter endless loop so server process never terminates
B7 Apache httpd Gracefully restart service with mmm-workers takes long time
B8 Apache httpd Health check is executed more often than configured intervals
B9 Apache httpd Slow startup/reload when many ghosts are configured
B10 Apache httpd Workers take 60-100% CPU even though no client sent requests
B11 Redis Cluster nodes command is costly in a large cluster
B12 Redis BRPOP command becomes slow when a large number of clients

existB13 Redis ZREVRANGE command is 50% slower after upgrade
B14 PostgresSQL EXPLAIN hangs for generating some query plans
B15 PostgresSQL Vacuum process fails to prune all heap pages and endlessly retries

19

✦ All ground truth has already known in their bug reports

Effectiveness

ID vProf
B1 1
B2 1
B3 1
B4 3
B5 4
B6 5
B7 3
B8 1
B9 2
B10 1
B11 1
B12 1
B13 2
B14 4
B15 3

Summary@top5 15/15

✦ vProf ranks root causes of all 15
issues within the top 5

✦ 7 of 15 have their root causes ranked
at the top 1

20

Comparison with Other Tools

ID vProf gprof Perf Perf-pt Coz Statistical debugging
B1 1 454 32 32 NR 4
B2 1 5 2 2 NR 12
B3 1 2 3 6 1 30
B4 3 21 9 5 NR 18
B5 4 13 4 9 NR 566
B6 5 36 13 13 NR NR
B7 3 182 1024 1024 Crash 7
B8 1 1 6 7 ChildProc 3
B9 2 11 28 28 NR 9
B10 1 4 16 16 ChildProc 161
B11 1 1 10 10 2 NR
B12 1 5 19 19 1 8
B13 2 16 13 13 9 NR
B14 4 NR 163 163 ChildProc 13
B15 3 14 56 56 ChildProc 18

@top5 15/15 6/15 3/15 2/15 3/15 1/15

✦ Other tools rank root causes within the top 5 for at most 6 cases

21

✦ All the above issues have both reporter and developer involving the debugging.

vProf is Effective in Diagnosing Unresolved Issues

ID Bug Description Date

Redis-10981 lrange command takes longer to finish when Redis is upgrade from
version 6.2.7 to 7.0.3 07-14-2022

MDEV-16289
Query runs unexpectedly slow. The query selects records created
within a given time period and excludes the records that are
referenced by another table in a another given period

05-25-2018

MDEV-17878 Searching for the query execution plan for a SELECT query involving
many joins takes forever for larger datasets, using 100% CPU 11-30-2018

22

�� �� �	 �
 �� �� �
 �� �� �����������	��
���
���
��	
���
���
���
���

��
��

��
�"�

��
���

� !������������ !������� !�� ����

vProf is Efficient: CPU Overhead

✦ The overhead gaps between gprof and vProf are mostly within 5%

28%
23%

23

vProf is Efficient: Memory Overhead

ID #Vars PCToVar(kB) VariableArray(kB) ValueSamples(kB) Sum(kB)
B1 233 3862 430 21133 25425
B2 65 4143 29 153 4325
B3 399 4005 26 38563 42594
B4 852 3987 67 58 4112
B5 577 3575 22 8 3605
B6 501 673 287 2 962
B7 113 162 6 16 184
B8 169 260 127 43 430
B9 374 194 16 25 235
B10 164 642 186 13 841
B11 531 612 382 1216 2210
B12 623 591 44 1755 2390
B13 564 641 754 132 1527
B14 479 2037 1031 79 3147
B15 805 2297 927 3269 6493

Min: 184kB

Max: 42MB

24

Conclusions

✦ Missing dataflow in profiler makes performance diagnosis ineffective

✦ vProf integrates dataflow to re-rank functions and reveal root cause

✦ vProf successfully diagnosed all 15 resolved performance issues and three
unresolved performance issues

✦ The overhead of value-assisted profiling is acceptable

25

https://github.com/wenglingmei/vprofAE

https://github.com/wenglingmei/vprofAE

