
Pushing Performance Isolation
Boundaries into Application with pBox

Yigong Hu, Gongqi Huang, Ryan Huang

SOSP’23

1

Performance Isolation Is Critical in Application

2

Shared Resource

SLOW

*Caladan(OSDI’20),PARTIES(ASPLOS’19)

Inter-application
performance interference

• Performance interference can happen inside application
o Tasks in same application contend for shared application virtual resources
o Cause severe performance interference in production

Intra-application Performance Interference

3

queuebuffer Index

Application

Request 1 Request 2

SLOW

0

200

400

0 20 40 60 80

Q
u

e
ry

 p
e

r
se

co
n

d

Times(s)

Intra-app Interference Example

4

MySQL

Continuous
write queries

0

200

400

0 20 40 60 80

Q
u

e
ry

 p
e

r
se

co
n

d

Times(s)

Intra-app Interference Example

4

Long read
transaction join

Long read
Transaction

MySQL

Continuous
write queries

UNDO log …

0

200

400

0 20 40 60 80

Q
u

e
ry

 p
e

r
se

co
n

d

Times(s)

Intra-app Interference Example

4

Purge
thread

Long read
transaction join

Purge thread
triggered

4X

throughput

decreases

Long read
Transaction

MySQL

Continuous
write queries

UNDO log …

Intra-app Interference Is Prevalent

5

Intra-app Interference Is Long-lived

6

2006

2014

2017

2020

Current Practice of Performance Isolation

7

Practice 1: performance isolation by partitioning hardware resource

Application

CPU

Memory

Disk

Application

CPU

Memory

Disk

Current Practice of Performance Isolation

7

Practice 1: performance isolation by partitioning hardware resource

Application

CPU

Memory

Disk

Application

CPU

Memory

Disk

Problems:

• Application virtual resource is invisible to OS

• Allocating hardware resource can’t directly affect
application resource contention

Interference

8

Current Practice of Performance Isolation

Practice 2: fine-grained resource quota
Application

8

Current Practice of Performance Isolation

Practice 2: fine-grained resource quota

CPU

Memory

Disk

CPU

Memory

Disk

Solutions:
• Assign Fixed resource quota

• Trace application tasks’ resource usage

• Deny excessive resource usage

Problems:
• Resource usage is shifting

• Hard to set quota statically

Application

CPU

Memory

Disk

CPU

Memory

Disk

Issues of Current Practice

9

Difficult to enforce isolation inside applications

“Invisible to diverse application-level virtual resources

Insufficient and inflexible to enforce resource quota

Our Solution – pBox

10

Difficult to enforce isolation inside applications

“Invisible to diverse application-level virtual resources

Insufficient and inflexible to enforce resource quota

Let developers define performance isolation domain in application

Expose set of APIs to easily trace application resource usage

Design mechanism to detect and mitigate intra-app interference

Key Behavior of Intra-app Interference

11

Application

Kernel

Resource A

Block

Task BTask A

hold

CPU Memory Disk

Resource Management

Key Behavior of Intra-app Interference

11

Application

Kernel

Resource A

Block

Task BTask A

hold

CPU Memory Disk

Resource Management

Insight: make the OS aware of virtual resource contention

Performance Box

12

Design goal: monitor application resource contention and expose to Kernel

Application

Kernel

Resource A

Block

Task BTask A

hold

CPU Memory Disk

Resource Management

pBox pBox

Performance Box

12

Design goal: monitor application resource contention and expose to Kernel

Application

Kernel

Resource A

Block

Task BTask A

hold

CPU Memory Disk

Resource Management

pBox Manager

Resource A

pBox pBox

pBox Runtime

pBox APIs

13

Create
int create_pbox(IsolationRule rule);

int release_pbox(IsolationRule rule);

Activate
int activate_pbox(int psid) ;

int freeze_pbox(int psid);

Trace int update_pbox(size key, event_type event);

1. Easily define the isolation boundary by developers

2. Automatically enforce performance isolation among pBox

void add_connection(THD *thd) {
…
While (thd_connection_alive(thd)) {
if (do_command(thd))
break;

end_connection(thd);
}
close_connection(thd);

}

pBox Creation

14

Loop to handle all requests from one client

Example: MySQL thread handler for a client connection

void add_connection(THD *thd) {
rule = { .type = RELATIVE, .isolation_level = 50 };
psid = create_pbox(rule);
…
While (thd_connection_alive(thd)) {
if (do_command(thd))
break;

end_connection(thd);
}
close_connection(thd);
release_pbox(psid);

}

pBox Creation

15

Loop to handle all requests from one client

void add_connection(THD *thd) {
rule = { .type = RELATIVE, .isolation_level = 50 };
psid = create_pbox(rule);
…
While (thd_connection_alive(thd)) {
if (do_command(thd))
break;

end_connection(thd);
}
close_connection(thd);
release_pbox(psid);

}

pBox Creation

15

Loop to handle all requests from one client

Isolation
rule

Handle one request

Example: MySQL thread handler for a client connection

Define pBox Isolation Area

16

bool do_command(THD *thd) {
…
command = thd->net.read_pos[0];
ret = dispatch_command(command, thd, ...);
…

}

Example: MySQL thread handler for a client connection

Define pBox Isolation Area

17

bool do_command(THD *thd) {
…
command = thd->net.read_pos[0];
psid = get_current_pbox();
…
activate_pbox(psid);
ret = dispatch_command(command, thd, ...);
freeze_pbox(psid);
…

}

Define pBox Isolation Area

17

bool do_command(THD *thd) {
…
command = thd->net.read_pos[0];
psid = get_current_pbox();
…
activate_pbox(psid);
ret = dispatch_command(command, thd, ...);
freeze_pbox(psid);
…

}

Additional code to filter out requests
from pBox’s isolation area

Example: MySQL thread handler for a client connection

pBox APIs for Thread Pool Model

18

API: int bind_pbox(size_t key, unbind_flags flags)
int unbind_pbox(size_t key, unbind_flags flags)

Functions to transfer the ownership of pBox:

• bind_pbox finds the pBox from the key and binds it with the current thread

• unbind_pbox detaches the pBox from current thread

• Detach/attach to thread when the task is detached/attached from thread pool

How to Trace Application Resource

19

• Require developer to expose resource usage
o High overhead to inform every changes of resource

• Observation:
o two key questions for performance interference: which activity is

causing delay and which one is deferred

o But we also need to adapt different resource implementation, variable
types and resource use pattern

• Our approach:
o A new concept, state event, to capture key application resources event

State Event

20

PREPARE A pBox is derferred by an application resource

ENTER A pBox is no longer derferred by an application resource

HOLD A pBox is holding an application resource

UNHOLD A pBox releases an application resource

API: int update_pbox(size_t key, event_type event)

Tracing Deferring Time by State Event

21

noisy pBox victim pBox

Shared

Resource

Holding time Defer time

PREPARE
ENTER
HOLD
UNHOLD

Tracing Deferring Time by State Event

21

noisy pBox victim pBox

Shared

Resource

Holding time Defer time

PREPARE
ENTER
HOLD
UNHOLD

Tracing Deferring Time by State Event

21

noisy pBox victim pBox

Shared

Resource

Holding time Defer time

PREPARE
ENTER
HOLD
UNHOLD

Tracing Deferring Time by State Event

21

noisy pBox victim pBox

Shared

Resource

Holding time Defer time

PREPARE
ENTER
HOLD
UNHOLD

Detecting Performance Interference for Activity

22

• State event only trace deferring time on resource level
o Resource level interference ≠ end-to-end performance interference

o No priori knowledge of future resource usage and interference level

Activities' Interference Level

23

PREPARE
ENTER
HOLD
UNHOLD

Resource A Resource B

𝑒𝑛𝑡𝑒𝑟𝐴 - 𝑝𝑟𝑒𝑝𝐴 𝑒𝑛𝑡𝑒𝑟𝐵 - 𝑝𝑟𝑒𝑝𝐵 +𝑫𝒆𝒇𝒆𝒓 𝒕𝒊𝒎𝒆 =

pBox

𝑰𝒏𝒕𝒆𝒓𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒍𝒆𝒗𝒆𝒍 =
𝐷𝑒𝑓𝑒𝑟 𝑡𝑖𝑚𝑒

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 − 𝐷𝑒𝑓𝑒𝑟 𝑡𝑖𝑚𝑒

Worse-case analysis: if current 𝑰𝒏𝒕𝒆𝒓𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒍𝒆𝒗𝒆𝒍 is larger
than isolation goal, it’s time to take action

Competitor Map + Holder Map

24

pBox A

PREPARE
ENTER
HOLD
UNHOLD

pBox B

Competitor map Holder map

pBox C

Resource A Resource A Resource A

Resource
A

Resource
B

Resource
C

…

Resource
A

Resource
B

Resource
C

…
pBox A

Competitor Map + Holder Map

24

pBox A

PREPARE
ENTER
HOLD
UNHOLD

pBox B

pBox B

Competitor map Holder map

pBox C

Resource A Resource A Resource A

Resource
A

Resource
B

Resource
C

…

Resource
A

Resource
B

Resource
C

…
pBox C pBox A

Competitor Map + Holder Map

24

pBox A

PREPARE
ENTER
HOLD
UNHOLD

pBox B

pBox B

Competitor map Holder map

pBox C

Resource A Resource A Resource A

Resource
A

Resource
B

Resource
C

…

Resource
A

Resource
B

Resource
C

…
pBox C pBox A

𝑰𝒏𝒕𝒆𝒓𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒍𝒆𝒗𝒆𝒍 > 𝒊𝒔𝒐𝒍𝒂𝒕𝒊𝒐𝒏 𝒈𝒐𝒂𝒍 ?

Competitor Map + Holder Map

24

pBox A

PREPARE
ENTER
HOLD
UNHOLD

pBox B

pBox B

Competitor map Holder map

pBox C

Resource A Resource A Resource A

Resource
A

Resource
B

Resource
C

…

Resource
A

Resource
B

Resource
C

…
pBox C pBox A

𝑰𝒏𝒕𝒆𝒓𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒍𝒆𝒗𝒆𝒍 > 𝒊𝒔𝒐𝒍𝒂𝒕𝒊𝒐𝒏 𝒈𝒐𝒂𝒍 ?

Interference Mitigation

25

• Reallocating application resource can introduce dangerous side
effects to application

• Mitigating interference without breaking application logic
o Adding a delay to noisy activity
o Only penalize the noisy pBox when a UNHOLD event is received

• Handle nest state events
o A noisy pBox can hold multiple resources
o Only penalize when pBox no longer holds any application resource

Score-based Penalty Length Adjustment

26

• For i rounds of penalty, we calculate victim pbox

o 𝑆𝑖 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑓𝑒𝑟𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑥𝑒𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

o 𝑷𝒆𝒏𝒂𝒍𝒕𝒚 𝒆𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆𝒏𝒆𝒔𝒔 𝑺𝒄𝒐𝒓𝒆 = ൞

𝑠𝑐𝑜𝑟𝑒 + 1; 𝑖𝑓 𝑠 𝑖 + 1 > 𝑠(𝑖)

𝑠𝑐𝑜𝑟𝑒 − 1; 𝑖𝑓 𝑠 𝑖 + 1 < 𝑠 𝑖 𝑎𝑛𝑑 𝑠𝑐𝑜𝑟𝑒 > 1

1 ; 𝑖𝑓 𝑠 𝑖 + 1 < 𝑠 𝑖 𝑎𝑛𝑑 𝑠𝑐𝑜𝑟𝑒 = 1

o Next penalty length = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ × (1 + 𝑠𝑐𝑜𝑟𝑒)

Check paper for details

Other Optimization

27

• Lightweight Tracing
o Pre-allocation for frequently used data struct to reduce the need for

additional memory calls
o Reduce the number of syscalls like update_pbox
o Optimizing the datastruct

• Lazy unbind
o unbind_pbox only marks a pbox as detached from thread
o only detach when bind_pbox bind the pbox to a different thread

Evaluation

28

• Can pBox reduce intra-application interference?

• How does pBox compare to state-of-art solutions?

• What is the overhead?

Experiment Setup

29

• Implemented in Linux kernel 5.4.1 with a user-level library

• A Static analyzer to find the state event

• Ported to five systems
o MySQL, PostgreSQL, Apache, Varnish, Memcached

Software SLOC SLOC Added Inspected Functions

MySQL 1.74M 192 83

PostgreSQL 629K 127 71

Apache 198K 71 43

Varnish 59K 77 53

Memcached 19K 70 22

Microbenchmark

30

• Test latency of pbox APIs compared with get_pid

8782
2877

421 458 458 495 364 525 411

22491

1

10

100

1000

10000

100000

La
te

n
cy

(m
s)

update1* update_pbox under no interference
update2* update_pbox under interference

Real-world intra-app interference cases

31

ID Application Contending Resource Description

C1

MySQL

table Write query blocked by long update query

C2 global mutex Inserting query on table without primary key has contention

C3 tickets Query blocked on innodb thread concurrency

C4 transaction history length SERIALIZABLE isolation causes overhead to read query

C5 UNDO log Background purge task blocks client request

C6

PostgreSQL

index search tree In-progress INSERT delayes other queries

C7 database table Long update query blocks other requests

C8 database table buffer content lock contention on SHARED lock

C9 dead table rows Vacuum full process blocks other requests

C10 write-ahead log A large WAL blocks requests

C11
Apache

fcgid request queue slow request in mod_fcgid blocks other fast connections

C12 apache thread pools Apache locks server if reaching maxclient

C13 php thread pool Apache server slows due to contention on php connection

C14
Varnish

varnish thread pool Slow request on visiting big objects block other request

C15 system lock lock contention with high number of thread pools

C16 Memcached system lock lock contention in the cache replacement

Performance Interference Reduction

32

Reduction Ratio =
𝑇𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒−𝑇𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑇𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 −𝑇𝑁𝑜𝑟𝑚𝑎𝑙

-10%

10%

30%

50%

70%

90%

110%

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

pbox

pBox: 86%

Performance Interference Reduction

33

-500%

-400%

-300%

-200%

-100%

0%

100%

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

pbox cgroup Parties Retro PSP

Number of case improved:
 pBox (15/16) ; cgroup(3/16); PARTIES(3/16); Retro(5/16); DARC(3/16)

pBox Overhead

34

0%

2%

4%

6%

1 16 32 64

O
ve

rh
ea

d

of threads

MySQL PostgreSQL Apache Varnish Memcached

-2%

0%

2%

4%

6%

1 16 32 64

O
ve

rh
ea

d

of threads

MySQL PostgreSQL Memcached

Read-intensive workload:

Write-intensive workload:

Conclusion

35

1. Intra-application performance interference is difficult to mitigate

2. Performance isolation needs to be enforced inside application

3. pBox, an abstraction to push performance isolation into application
1. Make OS aware of application resource usage

4. pBox mitigate 15/16 interference cases with a 86% reduction ratio

Thank you!

Question List: Motivation

36

1. Why design pBox in kernel? Or Why pBox should be a OS abstraction

2. How does pBox deal with micro-second level activity

Question List: Design

37

1. How many manually effort to insert state event

2. How does developer know the correctness of instrumentation

3. Does pBox need a dedicate core? If so, what is the overhead

4. Would pBox make wrong penalty decision

5. Would pBox take penalty too late

6. How does pBox support event driven

Question List: Evaluation

38

1. It is unclear how pBox behaves for intra-application interference

2. What will happen if pBox policy make wrong decision

3. Is there any parameter in pBox

4. Why you only test on 15 cases

Static analyzer

39

Effectiveness of Different Penalty Length

40

0%

20%

40%

60%

80%

100%

120%

c1 c3 c4 c5 c6 c7 c8 c9 c10

Fixed_10 Fixed_100 adaptive

Penalty

41

Rule

42

How to Find State Event

43

• Manually instrumenting all state events in code base
o To much domain knowledge

o A lot of resource -> waste time

o Instrumentation can be error-prone

Notify State Event to pBox Manager

44

void srv_enter_innodb() {
…
for(;;) {
if(srv_conc.n_active < thread_concurrency) {
n_active = os_atomic_inc(&srv_conc.n_active);
if(n_active <= thread_concurrency) {
srv_enter_innodb_with_tickets(trx);
return;

}
}
os_thread_sleep(sleep_in_us);

}
…

}

void srv_exit_innodb() {
…
os_atomic_dec(&srv_conc.n_active, 1);
…

}

get the thread tickets, enter innodb

no thread tickets, block itself

Notify State Event to pBox Manager

45

void srv_enter_innodb() {
 update_pbox(&srv_conc.n_active, PREPARE);
for(;;) {
if(srv_conc.n_active < thread_concurrency) {
n_active = os_atomic_inc(&srv_conc.n_active);
update_pbox(&srv_conc.n_active, HOLD);
if(n_active <= thread_concurrency) {
update_pbox(&srv_conc.n_active, ENTER);
srv_enter_innodb_with_tickets(trx);
return;

}
}
os_thread_sleep(sleep_in_us);

}
}

void srv_exit_innodb() {
os_atomic_dec(&srv_conc.n_active, 1);
update_pbox(&srv_conc.n_active, UNHOLD);

}

get the thread tickets, enter innodb

no thread tickets, block itself

Compiler Support

46

void srv_enter_innodb() {
…
for(;;) {
if(srv_conc.n_active < thread_concurrency) {
n_active = os_atomic_inc(&srv_conc.n_active);
if(n_active <= thread_concurrency) {
srv_enter_innodb_with_tickets(trx);
return;

}
}
os_thread_sleep(sleep_in_us);

}
…

}

void srv_exit_innodb() {
…
os_atomic_dec(&srv_conc.n_active, 1);
…

}

• Locate the resource variable

o Find block function

o Find the loop that uses block function

o Check the conditional variable

Compiler Support

46

void srv_enter_innodb() {
…
for(;;) {
if(srv_conc.n_active < thread_concurrency) {
n_active = os_atomic_inc(&srv_conc.n_active);
if(n_active <= thread_concurrency) {
srv_enter_innodb_with_tickets(trx);
return;

}
}
os_thread_sleep(sleep_in_us);

}
…

}

void srv_exit_innodb() {
…
os_atomic_dec(&srv_conc.n_active, 1);
…

}

• Locate the resource variable

o Find block function

o Find the loop that uses block function

o Check the conditional variable

• Locate the inserting point

o Find the hold operation for conditional

variable

o Find the unhold operation for conditional

variable

