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Abstract
Modern applications are highly concurrent with a diverse
mix of activities. One activity can adversely impact the per-
formance of other activities in an application, leading to
intra-application interference. Providing fine-grained perfor-
mance isolation is desirable. Unfortunately, the extensive
performance isolation solutions today focus on mitigating
coarse-grained interference among multiple applications. They
cannot well address intra-app interference, because such issues
are typically not caused by contention on hardware resources.

This paper presents an abstraction called pBox for devel-
opers to systematically achieve strong performance isolation
within an application. Our insight is that intra-app interfer-
ence involves application-level virtual resources, which are
often invisible to the OS. We define pBox APIs that allow an
application to inform the OS about a few general types of state
events. Leveraging this information, we design algorithms that
effectively predict imminent interference and carefully apply
penalties to the noisy pBoxes to achieve a specified isolation
goal. We apply pBox on five large applications. We evaluate the
pBox-enhanced applications with 16 real-world performance
interference cases. pBox successfully mitigates 15 cases, with
an average of 86.3% reduction of the interference.

CCS Concepts: • Software and its engineering→ Operat-
ing systems; Software performance.
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Figure 1. A real-world intra-application performance interference
issue from MySQL. Details are described in Section 2.1.

1 Introduction
Applications in production demand strong performance iso-
lation—the ability to maintain consistent and predictable
performance despite potential sources of interference.

Extensive research [10, 11, 26, 47, 58, 64, 68, 71, 78] has
focused on achieving performance isolation among multiple
applications running on the same server. They broadly fall into
two categories: (1) partitioning hardware resources [10, 47,
48], and (2) dynamically adjusting CPU core assignments [18,
26]. They can mitigate interference between applications
because the interference is caused by direct contention on
hardware resources, e.g., a batch job overuses CPU or network
and causes a slowdown to a latency-critical job.

What receives less attention is performance isolation within
an application, which ensures that distinct activities in an
application do not adversely affect each other’s performance.

Providing fine-grained performance isolation is increasingly
desired by users [3, 23] and developers [19, 72]. Modern
applications have a high degree of concurrency with a diverse
mix of activities, such as one thread to handle each request
and various background tasks, making them susceptible to
intra-application interference. For example, in processing
a query from a client, a thread overuses the UNDO log
defined in the application, significantly slowing down another
client’s requests (Figure 1). Such issues lead to unpredictable
performance and poor user experience. They cannot be well
addressed by adjusting hardware resources like CPU cores.
Indeed, they can occur when hardware resources are sufficient.

The lack of principled solutions for fine-grained perfor-
mance isolation forces developers to rely on ad-hoc code, such
as splitting data structures, inserting timeouts, and tuning con-
currency levels, which is not only difficult and time-consuming
to implement, but also ineffective. Intra-app interference is of-
ten triggered by complex interactions among activities, which
are difficult to anticipate during coding. There are also many
program points that can suffer from interference, so it is almost
infeasible to insert isolation code everywhere.

https://doi.org/10.1145/3600006.3613159
https://doi.org/10.1145/3600006.3613159


SOSP ’23, October 23–26, 2023, Koblenz, Germany Yigong Hu, Gongqi Huang, and Peng Huang

An alternative strategy is using resource quotas. The re-
source container OS abstraction [7] facilitates accurate ac-
counting of resources consumed by an application activity, e.g.,
functions associated with handling a request. Linux control
group [53] supports thread-level resource control. However,
production applications exhibit fluctuating resource usage,
making it difficult to decide on a suitable quota.

To address the current gaps, this paper proposes an OS
abstraction called pBox that allows developers to systematically
and conveniently achieve performance isolation within an
application. pBox does not enforce resource quotas. Instead,
it focuses on the ultimate objective of reducing interference.
Developers add pBox creation code in the application activity
boundaries and specify a high-level isolation goal. At runtime,
the kernel monitors if any pBox’s isolation goal is in danger
of being violated, and reacts to satisfy the goal.

The design of pBox is informed by our observation that intra-
app interference involves application-level virtual resources,
such as shared buffers, queues, tickets, and logs. In contrast
to hardware resources directly managed by the OS, virtual
resources are usually invisible to the OS and exhibit diverse
representations. Moreover, applying resource reallocation, the
common approach to mitigating interference, poses challenges
in this context. Reallocating virtual resources at the system
level is non-trivial and can cause side effects to applications.

Fine-grained performance isolation thus requires coordina-
tion between the OS and the application, but how to accom-
modate the wide variety in virtual resources and their usage
among different applications? Through analyzing real-world
intra-app interference issues, our insight is that despite their
variety, they can be reduced to a small set of what we call
state events. By exposing these events, it is feasible for the OS
to recognize and mitigate interference effectively and safely.

Based on this insight, we design a few general pBox APIs for
an application to communicate its state events to the kernel. A
kernel manager leverages the state events and other information
to provide performance isolation at pBox granularity.

At the algorithmic level, we address two key challenges.
First, the pBox manager needs to proactively detect imminent
interference. Compared to current cross-app isolation solu-
tions that reactively detect interference from the overall SLO
metrics, we face a more strict requirement. This is because
our performance isolation targets a finer granularity, namely
each pBox. Intra-app interference may also occur among a few
activities, thereby escaping SLO monitors. Also importantly,
since we cannot reclaim a contended virtual resource, we need
to detect interference early (ideally before it occurs). This
early detection is crucial to minimize a noisy pBox’s impact.

To tackle this challenge, we design an algorithm that uses
a worst-case style analysis to predict whether the specified
isolation goal of any pBox might be violated. If so, the
algorithm additionally identifies the victim and noisy pBoxes.

The second challenge is taking effective action. For safety,
the pBox manager does not reallocate virtual resources. It

instead simply applies a delay penalty to the noisy pBox.
Because we can detect imminent interference early, the penalty
typically can prevent the noisy pBox from causing more severe
contention. We design an algorithm that uses an adaptive
penalty length and carefully chooses the penalty timing.

Since pBox is activated during regular execution, it should
not incur significant overhead. We design the pBox detection
and prediction algorithms to be lightweight yet effective. We
delegate some pre-processing of the application state events
in a user-level library and minimize the kernel boundary
crossings. We also track certain application state events when
the application makes regular system calls.

Like any OS abstraction, using pBox in an application code
requires developers’ involvement. We design the pBox APIs
to be intuitive and support typical application architectures.
Our focus on high-level isolation goals alleviates developers
from hard-to-specify resource quotas or reasoning about
the complex relationship between virtual resources and end-
to-end performance. Developers do need to annotate the
state events of a virtual resource. In our experience, such
efforts are moderate. We also design a static analyzer that can
automatically identify many of the state events in a codebase.

We implement pBox in the Linux kernel 5.4 along with a
user-level library. For evaluation, we choose five large server
applications—MySQL, Apache, PostgreSQL, Vanish, and
Memcached—and integrate pBox APIs into these complex
codebases without significant effort. To test the performance
isolation capabilities of the added pBox code, we reproduce 16
real-world intra-application performance interference issues
in the five applications. pBox reduces the performance inter-
ference for 15 cases, by an average of 86.3% and up to 113.6%.
We compare with four start-of-art solutions [10, 18, 48, 53].
They at best only reduce the performance interference for five
cases by 38.8% on average, and would make the interference
worse in the majority of the cases.

This paper makes the following contributions:
• We propose pBox, an abstraction that pushes the perfor-

mance isolation boundaries into an application to address
the intra-app interference issues facing modern applications.
• We address several design challenges, including identifying

a small set of general state events to support diverse virtual
resources, and designing algorithms to proactively detect
imminent interference and take effective actions.
• We implement pBox in the Linux kernel and a library, along

with a companion analyzer. We show pBox’s effectiveness
on real intra-app interference issues in large applications.
pBox is available at https://github.com/OrderLab/pBox.

2 Background and Motivation
Intra-app interference refers to an application activity experi-
encing severe performance issues due to some other indepen-
dent activity in that application. We discuss three real issues
from MySQL to show the characteristics of this problem.

https://github.com/OrderLab/pBox
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Figure 2. Throughput of all foreground clients

2.1 Real Intra-App Interference Cases
Case 1: UNDO log. MySQL has different transaction isola-
tion levels. The default setting establishes a snapshot at the
first read. While this is convenient, users found it can cause
severe performance interference in production [75, 85]. Inn-
oDB is a multi-version concurrency control (MVCC) storage
engine, which uses a UNDO log that keeps transaction history.
If there are long transactions with old versions, the UNDO
log can grow large. As a result, when the old transactions are
committed, MySQL’s purge thread needs to spend a long time
cleaning up the UNDO log, blocking other activities.

To reproduce this case, we create a database with 1 table
and run two clients: A performs reads and B performs writes. A
issues each read request in a transaction, sleeps for 10 seconds
after the request finishes, then commits the transaction. By
doing so, we have a long transaction that keeps an old version
of the table. Consequently, each write request from client B
needs to update the UNDO log and causes a large UNDO log.

Although client A does not hold an exclusive table lock and
thus would not block client B, B’s latencies are still impacted
when A commits transactions. As Figure 1 shows, 10 seconds
after client A joins, client B’s latencies increase by about 4×.

The source of this interference is a virtual resource—the
UNDO log. The write queries result in the rapid growth of
the UNDO log, which increases the cleaning cost. In turn,
read queries are severely impacted because the UNDO log is
frequently held by the purge thread (iterating log entries).
Case 2: Buffer Pool. MySQL keeps a buffer pool to cache
the accessed table and index data. While it generally improves
performance, as reported by users [66], a backup task using
mysqldump can use many blocks in the buffer pool and cause
severe interference to other activities.

To reproduce this case, we create a small table (200MB)
that fits in the Innodb Buffer Pool (512MB), and a larger table
(4GB) that does not fit in the buffer pool. We run four clients
with uniform sysbench [42] OLTP on the small table and in
time 30 seconds, we run a background mysqldump task on
the second table. As Figure 2 shows, the throughput of the
four clients is initially around 300 req/sec, but the interference
from the backup task causes their throughput to drop by 10×.

The virtual resources involved in the interference are the
buffer pool and its free blocks. When the dump activity takes
many blocks from the buffer pool, it causes other activities
for the four clients to frequently evict its old pages, which in
turn leads to additional I/O costs for their requests.
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Figure 3. Avg. latency of requests from client 4. A fifth write-
intensive client connects around time 90 s.

buf_block_t* buf_LRU_get_free_block(

buf_pool_t* buf_pool) {

  ...

loop:

buf_pool_mutex_enter(buf_pool);

block = buf_LRU_get_free_only(buf_pool);

if (block) {

buf_pool_mutex_exit(buf_pool);

    return block;

  }

  /* If no block was in the free list, search 

     from the end of the LRU list */

  freed = buf_LRU_scan_and_free_block(buf_pool, 

        n_iterations > 0);

  buf_pool_mutex_exit(buf_pool);

if (freed)

goto loop;

}
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Figure 4. Finding a free block from the buffer pool in MySQL.

Case 3: Tickets. MySQL uses separate threads in its Inn-
oDB engine to process requests from client connections. To
minimize context switches, it limits the number of concurrent
threads by the innodb_thread_concurrency parameter. While
such a design is justified, it can cause performance interference
among client connections as reported by users [57, 74, 76].

To reproduce this issue, we create a database with 5 tables
(10𝐾 records per table). The thread concurrency is set to 4. We
run three clients performing write-intensive workloads and
one client performing read-intensive workloads. After around
90 seconds, a fifth client joins and issues write-intensive
queries. Each client only queries one dedicated table.

Figure 3 shows the latencies of client 4 (executing read-
intensive workload). In the first 90 seconds, this client’s av-
erage request latency is around 0.3ms. When the fifth client
connects, even though it operates on a different table, the
latency of the fourth client increases to around 0.9ms, which
is 3× slower than the non-interference case.

The interference involves two virtual resources—an integer
n_active and tickets. If a thread tries to enter InnoDB, it checks
whether the number of threads inside InnoDB has reached the
concurrency limit, by comparing an integer n_active with the
innodb_thread_concurrency parameter. If so, it needs to wait
and check again. Otherwise, n_active is incremented and the
thread is given a number of tickets. The thread can then enter
and leave InnoDB freely until the tickets are used up.
2.2 Observations
Intra-app interference issues are often not strictly a bug but a
design trade-off. Even after developers become aware of such
a trade-off, they may find the issue difficult to fix and keep
the design as is. For example, the InnoDB thread concurrency
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regulation in case 3 can reduce context switches and improve
scalability. Its limitation has been known for more than 10
years, but developers still keep it as a hard-to-tune parame-
ter [76]. As a result, performance interference issues can exist
in an application for a long time. We need solutions that can
dynamically mitigate performance interference.

In addition, while intra-app performance interference in-
volves contention, the issues are more complex than typical
poor synchronization. For example, for case 2, as Figure 4
shows, while a lock is used when accessing the buffer pool,
the lock is soon released after a block is obtained. Thus, the
real contended virtual resources are the free blocks, which are
used by the noisy activities without the lock. Similarly, the
core issue in case 1 is the subsection growth of the UNDO
log rather than an unfair lock. Thus, simply optimizing lock
or other synchronization mechanisms is ineffective.

2.3 Challenges and Gaps
Existing interference mitigation solutions use the allocation
of hardware resources as the control mechanism. They are
ineffective in addressing the intra-application interference
issues shown earlier, which can occur even when many idle
hardware resources are available. Blindly adjusting hardware
resources may even aggravate the interference. In case 1, if
we lower the CPU quota for the read requests or purge thread,
it would cause even worse write latencies, because the victim
activities were waiting for a virtual resource from the noisy
activity and would need to wait longer.

Dropping noisy requests is a non-solution either. Production
workloads are unpredictable, so it is difficult to know in
advance which requests will cause interference. For example,
both write (case 3) and read (case 1) queries can cause
interference in MySQL. Moreover, users expect applications
to provide strong performance isolation instead of dropping
requests. It is also common for the interference to be caused
by a background activity instead of a request.

Complex applications may implement custom mechanisms
that attempt to mitigate performance interference. For example,
MySQL allows limiting resources at the user account level,
such as the number of queries an account can issue per
hour [19]. However, they are helpful in preventing overload
but are ineffective in addressing normal interference, which
occurs even when a client sends a small number of requests.

In summary, despite the extensive effort into mitigating
performance interference, there is a lack of an effective and
systematic mechanism to provide strong performance isolation
within applications that users expect and desire.

3 Overview of pBox
Motivated by the observations from Section 2. We propose a
new OS abstraction called pBox that pushes the boundary of
performance isolation into the application for developers to
systematically minimize intra-app interference.

pBox1

App

lication

pBox2 pBox3

kernel

pBox4

pBox runtime

pBox manager

analysis

victim noisy normalvictim

action1 action2 action3 n/a

decision

event

event

event

event

activity A activity B activity C activity D

Figure 5. Overview of pBox.

Insight. Our insight is that the essence of intra-app perfor-
mance interference is different application activities contend-
ing on virtual resources, such as buffers and tickets. Thus, it
is invisible to the OS and cannot be simply mitigated through
adjusting hardware resources. pBox tackles this characteristic
by making the OS aware of virtual resource contention.
Abstraction. pBox is a performance isolation domain within
an application that logically divides an application’s execution
into independent activities, preventing activities within one
domain from poor performance due to the execution of activi-
ties in other domains. Existing abstractions such as resource
container [7] can capture activities within an application.
However, they focus on delineating resource principals while
treating each activity separately. In comparison, pBox focuses
on interactions across different activities and their scheduling.
It monitors the interactions to detect contention and applies
scheduling actions to achieve a performance isolation goal.
Usage. Developers create a pBox around code that represents
an application activity boundary. They directly specify a
high-level performance isolation goal for this pBox, e.g., a
maximum interference level x. The runtime then aims to
achieve the goal for activities executed within this pBox.

pBox supports flexible granularity. For example, in a request-
based application, developers can define a pBox for each re-
quest. They can also define a pBox for each client connection.
In this case, the pBox is created when a client connection is
established and destroyed when the corresponding connection
is closed. Note that one connection may send 𝑁 consecutive
requests of different types, e.g., write requests followed by
read requests. This pBox will be activated 𝑁 times to provide
performance isolation for 𝑁 activities—the handling of each
request from this connection. For 𝐶 concurrent client con-
nections, there can be 𝐶 pBoxes. Besides request handling,
developers also create pBoxes for other activities, e.g., one
pBox for each background thread.
Architecture. Figure 5 shows the pBox system overview.
pBox exposes a few general APIs (Section 4.1) for application
developers to use. A user-level library will be linked with the
application. The library traces critical state events (Section 4.2)
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Figure 6. pBox supports common application architectures.

/* Create a pbox with an isolation rule, return psid */
int create_pbox(IsolationRule rule)
int release_pbox(int psid)
void activate_pbox(int psid)
void freeze_pbox(int psid)
/* Inform a state event in the current pbox about a 
virtual resource named by key (typically an address) */
int update_pbox(size_t key, event_type event)

/* Detach current thread's pbox, associate the pbox with 
a key k (not a virtual resource key), return its psid */
int unbind_pbox(size_t k, unbind_flags flags)

for event-
driven apps

int bind_pbox(size_t k, bind_flags flags)

/* Find the pbox associated with k, bind it 
with the current thread, return its psid */

Figure 7. Main pBox APIs.

about application virtual resources and communicates them to
a kernel-level manager. The manager monitors the execution
of all the pBoxes. Using the state events along with other infor-
mation, the manager runs a detection algorithm (Section 4.3)
to determine if any pBox might suffer from interference soon,
and detect the potential noisy pBox(es) and victim pBox(es).
It then carefully applies penalty actions on the noisy pBox(es)
(Section 4.4) to achieve the isolation goal.

4 Design of pBox
In this section, we describe the interfaces of the pBox abstrac-
tion, the system components for supporting pBox, and the
algorithms for pBox to mitigate performance interference.

4.1 Main APIs and Usage
As an abstraction, pBox should be general enough to support
a wide range of applications with different architectures and
programming paradigms. As Figure 6 shows, there are three
common application architectures: (a) multi-threading; (b)
event-driven; (c) multi-process. In (a) and (c), one request or
task is typically handled by one thread or process. For (b),
multiple requests or tasks share the same thread. pBox provides
a few APIs (Figure 7) that support all three architectures.

An application calls create_pbox in a region that represents
an activity boundary to be protected. Such boundaries are
well-defined. For example, in MySQL, if developers want to
create a pBox for each client connection, they add a call at
the start of function do_handle_one_connection (Figure 8). At

void do_handle_one_connection(THD *thd) {
  IsolationRule rule = { .type = RELATIVE, 
    .isolation_level = 30 };
  int psid = create_pbox(rule);
  // keep receiving commands
  while (thd_is_connection_alive(thd))
    if (do_command(thd)) break;
  release_pbox(psid);
  close_connection(thd);
}
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bool do_command(THD *thd) {
  command = thd->net.read_pos[0];
  int psid = get_current_pbox();
  activate_pbox(psid);
  // handle a command, e.g., a request
  ret = dispatch_command(command, thd, ...);
  freeze_pbox(psid);
}

sql/sql_connect.cc

sql/sql_parse.cc

Figure 8. Example of using pBox in MySQL.

runtime, the kernel creates a new pBox instance and binds it
with the current thread that handles an incoming connection.

The create_pbox API takes an IsolationRule argument
for developers to specify an isolation goal. A typical type
of isolation rule specifies the relative performance behavior,
particularly latency increase, compared to the ideal, non-
interference execution. For example, a rule of 50% indicates
that the pBox’s execution latency should not be more than
50% worse than the latency if there was no interference (no
other pBoxes slowing it down). In Section 4.3.1, we discuss
how pBox enforces a relative isolation rule even though the
ground truth of non-interference performance is unknown.

When the application starts a new activity in a pBox, devel-
opers can activate the pBox by calling activate_pbox, which
causes the manager to start tracing this pBox and provide
performance isolation for it. Once the activity finishes, the
application calls freeze_pbox, which stops the tracing for
this pBox. For example, if a pBox represents a client connec-
tion thread, the activate_pbox and freeze_pbox can be called
when the thread starts and finishes processing one request
from the connection, respectively (Figure 8).

When the condition of a virtual resource changes, the
application signals a state event (Section 4.2) by calling
update_pbox. To support diverse virtual resources, the pBox
names a virtual resource with a generic key, which is typically
the address of the resource object. The manager does not need
to understand the semantics of a virtual resource. It only needs
the key to group recorded information such as the state events.

For event-driven applications, multiple pBoxes share the
same thread and only one pBox owns a thread at one time. To
support these applications, we provide two ownership transfer
APIs. The unbind_pbox API detaches the pBox bound with
the current thread and then associates this pBox with a key
(different from the resource key). The bind_pbox API finds the
pBox associated with a given key and binds it with the current
thread. For example, in a typical event-driven application,
when a request finishes processing, the connection will be
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State event Description

PREPARE The pBox is deferred by a virtual resource that is
currently held by another pBox.

ENTER The pBox is no longer deferred by the resource
HOLD The pBox is holding a virtual resource
UNHOLD The pBox has released the virtual resource
Table 1. Four state events for application virtual resources. A virtual
resource can be mutual exclusive, or exclusive with multiple units. It
can also be composed of multiple parts.

put into the event queue. Before the queuing, developers add
an unbind_pbox call with the connection IP as the key. At the
place where a new request from a connection is executed in
the worker thread, developers add a bind_pbox call.

4.2 State Event
We now introduce a key concept to pBox, state events.
4.2.1 Rationale. pBox’s insight is to make the OS aware
of application virtual resources. However, informing the OS
of every change in application virtual resource usage is too
overwhelming and imposes too much overhead. In addition,
application virtual resources have a wide range of semantics
and characteristics, the OS lacks the knowledge to transpar-
ently manage different virtual resources for an application.

Through analyzing real-world cases, we summarize four
general types of conditions that apply to all kinds of virtual
resources. Recognizing these conditions is necessary for ad-
dressing interference. We call them state events: (1) PREPARE;
(2) ENTER; (3) HOLD; (4) UNHOLD. Table 1 lists their semantics.

An alternative is the traditional resource acquire-release
model. However, that model does not capture the key charac-
teristics of performance interference: one activity is causing
delay to or deferred by another activity.

The PREPARE/ENTER events can capture how long an activity
is deferred when it tries to acquire a resource or during the
usage of the resource. The reason we distinguish the ENTER

and HOLD state events is that a virtual resource may consist
of multiple parts and an activity is unblocked from a partial
resource but still does not hold the full resource.

4.2.2 Finding state events. A state event is about the us-
age status of an application virtual resource. Identifying it
therefore requires domain knowledge. Developers (not users)
possess this knowledge to find code places to call update_pbox.
Leveraging state events from these API calls, the pBox manager
automatically detects and mitigates performance interference.

One approach to finding state events is based on the types
of objects that may cause contention, e.g., queues and buffers.
However, applications have many custom implementations of
these types, which can be easily missed.

We observe a more robust heuristic. Intra-app performance
interference usually comes down to the application using
waiting-related syscalls to block a victim task, such as sleep,
futex, or select. Thus, developers can first find call sites of

void srv_conc_enter_innodb_with_atomics() {
  update_psandbox(&srv_conc.n_active, PREPARE);
  for(;;) {
    if (srv_conc.n_active < thread_concurrency) {
      n_active = os_atomic_inc(&srv_conc.n_active);
      if (n_active <= thread_concurrency) {
        update_pbox(&srv_conc.n_active, ENTER);
        update_pbox(&srv_conc.n_active, HOLD);
        srv_enter_innodb_with_tickets(trx);
        return;
      }
    }
    os_thread_sleep(sleep_in_us);
  }
}
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storage/innobase/srv/srv0conc.cc

void srv_conc_exit_innodb_with_atomics() {
  os_atomic_dec(&srv_conc.n_active, 1);
  update_psandbox(&srv_conc.n_active, UNHOLD);
}

Figure 9. Example usage of update_pbox API in MySQL, which can
mitigate interference issues such as case 3 in Section 2.1.

such a syscall. Then they can check whether a shared variable
accessed by multiple activities is used to determine the control
paths to a call site. If so, this shared variable is likely a critical
virtual resource of interest. Developers can then add the four
state events for this resource. In comparison, if the paths to a
blocking call site only involve variables that are accessed by
one activity, it is likely self-waiting (e.g., a periodic task or
retries on I/O errors) that can be skipped.

Figure 9 shows an example of adding the update_pbox APIs
to the MySQL InnoDB code based on the above heuristics.
The shared variable srv_conc.n_active is a virtual resource
being contended by multiple activities and the sleep call at
line 281 represents an activity being blocked.

Note that developers are not expected to do a perfect job in
finding state events. As we later show (Section 6.8), pBox can
tolerate incomplete or inaccurate update_pbox calls and still
effectively mitigate interference.

We further design a companion static analyzer tool (Sec-
tion 4.5) to help developers. The tool implements an algorithm
based on the above heuristics and automatically analyzes the
codebase to find potential virtual resources.

4.3 Prediction and Early Detection of Interference
To achieve strong performance isolation, the manager must
monitor each pBox’s execution and proactively detect if a
violation is imminent. Early detection is especially important
because of the fine granularity of performance isolation and
the fact that we cannot reclaim a contented virtual resource.

A fundamental challenge, however, is that virtual resource
usage is low-level information, while the isolation rule is about
end-to-end latency. During an activity’s execution, we do not
know what its final latency will be, nor how much each virtual
resource will contribute to the final latency. Given a relative
isolation rule (Section 4.1), we also need to know the baseline
(interference-free) performance, which is usually unavailable.
4.3.1 Metrics and Algorithm. To tackle this challenge, we
use a pBox’s deferring time on virtual resources as a main
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Algorithm 1: Detect potential interference in pBox
Global: competitor_map - event info by resource key.
Input: (key, event) - arguments in an update_pbox call.

1 𝑝 ← 𝑔𝑒𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑏𝑜𝑥 (), 𝑛𝑜𝑤 ← get_time();
2 switch 𝑒𝑣𝑒𝑛𝑡 .𝑡𝑦𝑝𝑒 do
3 case 𝑃𝑅𝐸𝑃𝐴𝑅𝐸 do
4 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟_𝑚𝑎𝑝 [𝑘𝑒𝑦].add({𝑝, 𝑛𝑜𝑤});
5 case 𝐸𝑁𝑇𝐸𝑅 do
6 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟𝑠 ← 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟_𝑚𝑎𝑝 [𝑘𝑒𝑦];
7 forall c ∈ competitors do
8 if 𝑐.𝑝𝑏𝑜𝑥 == 𝑝 then
9 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟_𝑚𝑎𝑝 [𝑘𝑒𝑦].remove(𝑐);

10 𝑑𝑒 𝑓 𝑒𝑟 ← 𝑛𝑜𝑤 − 𝑐.𝑡𝑖𝑚𝑒;
11 𝑝.𝑑𝑒 𝑓 𝑒𝑟_𝑡𝑖𝑚𝑒 ← 𝑝.𝑑𝑒 𝑓 𝑒𝑟_𝑡𝑖𝑚𝑒 + 𝑑𝑒 𝑓 𝑒𝑟 ;
12 case HOLD do
13 𝑝.ℎ𝑜𝑙𝑑𝑒𝑟_𝑚𝑎𝑝.add(𝑘𝑒𝑦);
14 case UNHOLD do
15 if 𝑝.ℎ𝑜𝑙𝑑𝑒𝑟_𝑚𝑎𝑝.remove(𝑘𝑒𝑦) then
16 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟𝑠 ← 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟_𝑚𝑎𝑝 [𝑘𝑒𝑦];
17 forall c ∈ competitors do
18 𝑤𝑎𝑖𝑡𝑒𝑟 ← 𝑐.𝑝𝑏𝑜𝑥 ;
19 𝑡𝑒 ← 𝑛𝑜𝑤 −𝑤𝑎𝑖𝑡𝑒𝑟 .𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑠𝑡𝑎𝑟𝑡 ;
20 𝑑𝑒 𝑓 𝑒𝑟 ← 𝑛𝑜𝑤 − 𝑐.𝑡𝑖𝑚𝑒;
21 𝑡𝑑 ← 𝑤𝑎𝑖𝑡𝑒𝑟 .𝑑𝑒 𝑓 𝑒𝑟_𝑡𝑖𝑚𝑒 + 𝑑𝑒 𝑓 𝑒𝑟 ;
22 𝑡𝑓 ← 𝑡𝑒/(𝑡𝑑 − 𝑡𝑒 );
23 if 𝑡𝑓 > 𝑤𝑎𝑖𝑡𝑒𝑟 .𝑔𝑜𝑎𝑙 and 𝑝.𝑡𝑖𝑚𝑒 < 𝑐.𝑡𝑖𝑚𝑒 then
24 𝑛𝑜𝑖𝑠𝑦 ← 𝑝, 𝑣𝑖𝑐𝑡𝑖𝑚 ← 𝑤𝑎𝑖𝑡𝑒𝑟 ;
25 take_action(𝑛𝑜𝑖𝑠𝑦, 𝑣𝑖𝑐𝑡𝑖𝑚);

metric. Our rationale is that interference occurs when an
activity is deferred for a long time. We define the deferring
time for one activity to be the additional execution time
caused by other activities. Assume an activity uses a set of
resources 𝑟1, 𝑟2, . . . , 𝑟𝑛, and a list of PREPARE and ENTER state
events are received for each resource. We denote the time of
receiving the PREPARE events as 𝑝𝑟𝑒𝑝𝑟1 , 𝑝𝑟𝑒𝑝𝑟2 , . . . and the time
of receiving the ENTER events as 𝑒𝑛𝑡𝑟1 , 𝑒𝑛𝑡𝑟2 , . . .. The deferring
time is calculated as 𝑇𝑑 =

∑𝑟𝑛
𝑖=𝑟1

𝑒𝑛𝑡𝑖 − 𝑝𝑟𝑒𝑝𝑖 .
We did not choose holding time as a metric, because holding

a virtual resource for long does not mean the pBox is noisy.
To connect the deferring time metric to the end-to-end

isolation goal, we treat the unknown baseline (interference-
free) as an ideal execution with zero deferring time.

Assume the total execution time of an activity in a pBox
is 𝑇𝑒 and its total deferring time is 𝑇𝑑 . Its interference level
𝑇𝑓 =

𝑇𝑒
𝑇𝑒−𝑇𝑑 − 1 =

𝑇𝑑
𝑇𝑒−𝑇𝑑 . A given isolation goal 𝜆 is violated

if 𝑇𝑓 > 𝜆. The problem is that we do not know 𝑇𝑑 before this
activity finishes, so we need to approximately compute 𝑇𝑓 .

To achieve early detection, i.e., predicting whether a pBox’s
execution so far is in danger of violating the performance
isolation goal, we use a worst-case analysis inspired by the
worst-case execution time (WCET) analysis [82]. In particular,
using the current defer time 𝑡𝑑 and the current execution time
𝑡𝑒 , we can compute a simple approximate 𝑡𝑓 =

𝑡𝑑
𝑡𝑒−𝑡𝑑 . If 𝑡𝑓 > 𝜆,

we can have confidence that if the activity’s later execution
still maintains the same ratio, the pBox cannot achieve its goal.
Thus, it would be a good time to take action.

Algorithm 1 shows the core interference detection algorithm.
When a UNHOLD event is received (line 14), the manager first
checks whether the current pBox is the holder of the virtual
resource. If so, it iterates through all the waiting pBoxes
(line 17). If it finds a pBox whose 𝑡𝑑 is too long and the current
pBox is the holder before the waiting pBox, we detect potential
interference and find both the noisy pBox and the victim pBox.

The aforementioned detection logic is about one activity
executed in a pBox. Due to the fundamentally limited infor-
mation, we may miss detecting and mitigating interference in
one activity. Thus, the pBox manager also monitors the overall
performance of a pBox performance and detects interference
at the pBox level. To do so, it keeps a history of 𝑇𝑑 as well as
the 𝑇𝑒 . It calculates the average interference level 𝑇𝑓 =

𝑇𝑑

𝑇𝑒−𝑇𝑑
.

If the manager finds one pBox’s 𝑇𝑓 is close (default 90%) to
𝜆, it will also take action at the end of the activity.

Besides calculating the average, the manager supports other
metrics including tail and max based on the same principle.

Note that our algorithm does not assume a pBox accesses
only one resource at a time. It uses unique keys to identify
state events for different resources, so it tracks them separately
and concurrently. It also does not have resource dependencies
requirements. The deferring time is calculated based on the
timing of the state events. A different order of events would
change the time but not the accuracy of detection.

4.3.2 Tracking Execution Information. The manager tracks
each pBox’s execution information to both support the detec-
tion algorithm and facilitate mitigation actions (Section 4.4).

It tracks four statuses for each pBox: start (e.g., a new client
connection is established), active (e.g., a new request from
the connection is received), freeze (e.g., the request handling
finishes), and destroy (e.g., the connection is closed).

The manager begins to trace state events after a pBox is in
an active status, and ends tracing once it is in a freeze status.

When a PREPARE event is received, the manager notes this
pBox in a deferred state about a virtual resource and adds it
to a competitor map (list of pBoxes waiting for a resource).
When the pBox receives an ENTER event on the same resource,
the deferred state is ended and the manager calculates the
deferring time. If a pBox receives a HOLD event, the manager
records it in a holder map. The two maps are used in the
interference detection and mitigation logic.

4.4 Prevention and Mitigation of Interference
After detecting potential interference, the pBox manager needs
to take action. Unlike cross-app interference, where the kernel
can transparently adjust hardware resources, directly real-
locating a contended virtual resource can easily introduce
dangerous side effects to an application. For example, directly
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revoking a lock object from one activity and granting it to
another activity can easily violate critical section safety.

4.4.1 Action and Timing. We use penalizing the noisy pBox
as the main control action so that we can achieve performance
isolation without breaking application logic. There are multi-
ple ways to achieve the penalty, such as reducing scheduling
slices ( giving more to the victim pBox), and lowering priority.

We choose a simple type of penalty: adding a delay to
slow down the noisy pBox. In the Linux kernel, it is done by
calling schedule_hrtimeout. Compared to other penalties, it
introduces a simpler effect, which in turn makes it easier to
predict the mitigation effectiveness and make the interference
mitigation algorithm (Section 4.4.2) less complex. Also, this
simple penalty avoids conflicting with the main OS scheduler.

Applying penalty actions to noisy pBox might violate the
noisy pBox’s isolation goal and trigger additional penalty
action. To avoid the cascaded penalty, the detection algorithm 1
only uses the deferring time on virtual resources to determine
the interference level. Thus, the violation caused by penalty
action would not be considered interference.

The timing of the penalty action requires care. If a virtual
resource is still held by a noisy pBox, penalizing the noisy
pBox would cause the victim pBox to wait even longer for the
virtual resource. Thus, the manager waits until the noisy pBox
no longer holds the virtual resource to apply the penalty.

Another caveat is nested state events. A noisy pBox may
hold multiple virtual resources at the same time, so during its
penalty, it may still cause interference for other pBoxes. To
avoid this situation, the manager conservatively waits for the
noisy pBox to release all the virtual resources and takes action
at once. As a result, the noisy pBox can be penalized without
causing more performance interference.

4.4.2 Adaptive Penalty. The mitigation effectiveness de-
pends on the penalty action’s length. An improper length may
exacerbate the interference. Rather than using a fixed length,
which is hard to set, we adaptively adjust the length.

When the manager detects a noisy pBox (Algorithm 1), it
checks the action history. If this pBox has not been penalized
for the contended virtual resource before, the manager sets an
initial value 𝑝1 as the penalty length. Otherwise, the length is
adjusted based on the effect of the previous penalty.

We evaluate whether a penalty is good or not by comparing
the victim pBox’s performance before and after the penalty.
In particular, we calculate 𝑠 (𝑖) = 𝑇 𝑖

𝑑
/𝑇 𝑖

𝑒 for the victim pBox,
where 𝑇 𝑖

𝑑
and 𝑇 𝑖

𝑒 are the victim’s average deferring time and
execution time until the 𝑖-th action, respectively. This ratio
reflects the interference level (Section 4.3).

We design two adaptive policies. The first one is score-
based. If 𝑠 (𝑖 + 1) is larger than 𝑠 (𝑖), which means the penalty
does not reduce the interference level, we increment the score
by one. Otherwise, we decrement the score by one if it is
positive. The penalty length for the next action is set to

𝑝𝑖+1 = 𝑝1 × (1 + 𝑠𝑐𝑜𝑟𝑒/𝛼), where 𝛼 by default is 5, so each
ineffective action would increase the next penalty time. This
policy’s convergence to the optimal penalty may be slow.

Thus, we design a second policy inspired by the gradient
descent algorithm. We measure the gap from the isolation
goal (𝜆), 𝑔𝑎𝑝 = 𝑠 (𝑖 + 1) −𝜆, and the delta 𝛿 = 1− 𝑠 (𝑖)/𝑠 (𝑖 + 1).
The next penalty length is set to 𝑝𝑖+1 = 𝑝𝑖 ×𝑔𝑎𝑝/𝛿 . This policy
is faster but a step may be too large to reach the optimal value.

The manager dynamically chooses between the two policies.
If the deferring time is much larger than the penalty, it chooses
the second policy. Otherwise, it chooses the first policy.

To choose the initial penalty 𝑝1, we assume a simple
but representative interference model: one noisy pBox and
one victim pBox. The pBox manager derives a formula
to calculate the optimal penalty length under this model:
𝑝1 =

√︁
𝑡𝑑 (𝑣𝑖𝑐𝑡𝑖𝑚) × 𝑡𝑒 (𝑛𝑜𝑖𝑠𝑦) − 𝑡𝑒 (𝑛𝑜𝑖𝑠𝑦). In this way, the 𝑝1

would not be far away from the real optimal result.

4.4.3 Is The Action Too Late? A limitation with using
delay as the penalty action is that the action might be too late.
For instance, if the interference is caused by a noisy pBox
holding a virtual resource for a long time near the end of an
activity’s execution, by the time the pBox manager can safely
act, the penalty may be useless.

While adding complex transaction mechanisms may address
this limitation, our design has the advantages of simplicity
and safety. As we later show (Section 6), it is quite effective.

There are several reasons that can explain its effectiveness.
First, our detection algorithm (Section 4.3) is proactive, which
can find imminent interference before it reaches the level of vi-
olating the performance isolation goal. As a result, the penalty
action(s) can be applied early on to prevent the violation or at
least minimize the interference impact.

Second, we find that in real-world intra-application inter-
ference cases, a noisy pBox often creates contention on some
virtual resource more than once, either within one activity
or across a sequence of activities. Take case 1 in Section 2.1
as an example, the virtual resource is the UNDO log, and
the noisy activity keeps adding or cleaning up entries in it.
Similarly, in case 2, the virtual resource is the buffer pool, and
the noisy activity frequently obtains blocks from it.

Third, lateness in taking action can be more probable
when an activity finishes execution quickly. This can impose
demanding requirements on the detection and mitigation, but
we are targeting performance interference. In such a scenario,
a noisy activity typically requires a longer execution time to
cause severe interference.

For these reasons, despite the potential limitation, in prac-
tice, there are still many opportunities to effectively intervene.

4.5 Static Analyzer
We designed a companion static analyzer to help developers
find state events when adding pBox to their applications. The
analyzer is built on top of the LLVM framework [43], with
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Algorithm 2: Identify locations to add state events
Input: program - input application code; wait_funcs - a list of

standard waiting functions
Output: locations - locations to add update_pbox calls

1 𝑐𝑎𝑙𝑙_𝑖𝑛𝑠𝑡𝑠 ← getCallInstructions(𝑝𝑟𝑜𝑔𝑟𝑎𝑚);
2 foreach 𝑖𝑛𝑠𝑡 in 𝑐𝑎𝑙𝑙_𝑖𝑛𝑠𝑡𝑠 do
3 𝑐𝑎𝑙𝑙𝑒𝑒 ← getCallee(𝑖𝑛𝑠𝑡),𝑤𝑎𝑖𝑡 𝑓 ← 𝑛𝑖𝑙 ;
4 if 𝑐𝑎𝑙𝑙𝑒𝑒 in𝑤𝑎𝑖𝑡_𝑓 𝑢𝑛𝑐𝑠 then
5 𝑤𝑎𝑖𝑡 𝑓 ← 𝑐𝑎𝑙𝑙𝑒𝑒;
6 else
7 foreach 𝑓 in𝑤𝑎𝑖𝑡_𝑓 𝑢𝑛𝑐𝑠 do
8 if isWrapper(callee, f) then
9 𝑤𝑎𝑖𝑡 𝑓 ← 𝑓 ;

10 break;
11 if waitf ≠ nil then
12 𝑙𝑜𝑜𝑝 ← getLoop(𝑖𝑛𝑠𝑡);
13 if loop ≠ nil then
14 𝑠ℎ𝑎𝑟𝑒𝑑_𝑣𝑎𝑟𝑠 ← getSharedVars(𝑙𝑜𝑜𝑝.𝑐𝑜𝑛𝑑);
15 if 𝑠ℎ𝑎𝑟𝑒𝑑_𝑣𝑎𝑟𝑠 ≠ nil then
16 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠.add(<𝑖𝑛𝑠𝑡 , 𝑠ℎ𝑎𝑟𝑒𝑑_𝑣𝑎𝑟𝑠>);

around 800 SLOC in C++. It designs an algorithm based on
the observations described in Section 4.2.

Algorithm 2 lists the core logic. The analyzer takes as input
a list of standard library functions or syscalls that perform
waiting, such as semaop, pthread_sleep, pthread_cond_wait,
pthread_yield, and apr_sleep. Many applications also imple-
ment custom waiting functions that are wrappers of a standard
function. The analyzer identifies such a wrapper (isWrapper
at line 8) by checking whether a function calls some waiting
function in all the paths. Specifically, it checks the Control
Flow Graph (CFG) to see if this call instruction’s basic block
is a post-dominator [14] for the function’s entry basic block.

The analyzer then finds all callsites for these waiting func-
tions and the wrappers. Next, it checks whether a callsite is in
a loop (line 13). If so, it checks whether the loop condition
uses some variables shared by multiple activities (line 15).

A callsite that matches these conditions is a candidate
location to add a state event. The analyzer outputs all locations
and the associated shared variables (likely virtual resources).
The output guides developers to add update_pbox calls.

5 Implementation
We have implemented a prototype of pBox in Linux kernel
5.4.1 and a user-level runtime library.
Lightweight Tracing. Since a pBox is activated during an
activity’s execution, we need to minimize the overhead of
tracing and management. To make the tracing lightweight,
we optimize the cost of each pBox operation. A major cost is
allocating bookkeeping data structures such as the state event
hash table and competitor map. We reduce this cost by using
pre-allocation. For example, for the bind_pbox operation, one
pBox would normally only bind to one key (variable) at a time.
Thus, we allocate a small array in the pBox’s struct during its

creation phase. In later binding operations, we just find a free
slot in the array and allocate only if all slots are used.

After optimizing the core operation itself, the syscall over-
head dominates. We further reduce the number of syscalls,
especially for update_pbox. The user-level library checks
whether HOLD has a matched UNHOLD event and only calls
update_pbox when there is a match. Since the two events are
used to locate the noisy pBox and take action if needed, we can
skip the syscall upon redundant events. This decision needs
to find the associated pBox, which still requires a syscall. To
avoid this syscall, we use thread local storage to record the
pBox id when it is created. Then we keep an array in each
pBox to check the ownership of the virtual resource.
Supporting Event-driven Model. Event-driven applications
can be single-threaded or multi-threaded (thread pool). The
bind and unbind pBox APIs take a flags argument that can
indicate whether the currently bound thread is a shared thread
or a dedicated thread. If a noisy pBox is bound with a dedicated
thread, the manager takes action immediately. If the bound
thread is shared, penalizing the noisy pBox with a delay would
prevent other pBoxes from using this thread. The manager
instead makes the following activities from the noisy pBox
wait in the task queue for a while. Specifically, the manager
keeps a penalty timestamp. If an activity from the noisy pBox
selected to execute next happens within the timestamp, the
activity is put back to the task queue.

One challenge is how to manipulate the application task
queue without causing side effects. We observe that event-
driven applications commonly leverage kernel-level queues
for task management by using syscalls such as accept and
epoll. In such cases, the pBox manager traces state events at
the application level but take action in the kernel queues by
modifying the syscall implementations to achieve transparent
mitigation. If applications do not leverage kernel-level queues,
developers need to annotate the task queues.
Lazy Unbind. In high-performance event-driven applica-
tions, we observe that the same thread might frequently bind
and unbind to the same pBox. We introduce a lazy unbind
optimization to reduce the number of syscalls. Under this
mode, when the library receives a unbind_pbox call, it marks
the pBox as detached and pauses its state event tracing, but
does not make a syscall. At the kernel side, the pBox is still
bound with the current thread. In the next bind_pbox call, the
library checks if it is about the same detached pBox. If so,
the library removes the detached flag, also without making
a syscall. Otherwise, it makes a syscall for the manager to
unbind the last pBox and bind the new one.

6 Evaluation
We evaluate pBox to answer several questions: 1) Can pBox
reduce intra-app interference? 2) How does pBox compare to
state-of-the-art solutions? 3) Is pBox robust? 4) What is the
overhead? 5) How much effort is needed to use pBox?
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Software Desc. Arch. Version SLOC

MySQL Database Multi-thd 5.6.22 1.74M
PostgreSQL Database Multi-proc 9.2.0 629 K
Apache Web server Multi-thd 2.4.38 198 K
Varnish Proxy server Event-driven 4.0.0 59 K
Memcached Key-value store Event-driven 1.4.29 19 K

Table 2. Evaluated software.
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Figure 10. Latency (ns) of pBox operations. update2 (update1): call
update_pbox under (no) interference; pth_create: pthread_create.

Setup. The experiments are conducted on servers with 10-
core (20 hyper-threads) Intel Xeon E5-2640 CPUs at 2.4 GHz,
64 GB DRAM, and a 480 GB SSD, running Ubuntu 20.04. We
evaluate pBox on five large, open-source applications (Table 2):
MySQL, PostgreSQL, Apache, Varnish and Memcached. We
choose them because they are widely used, and cover different
functionalities and architectures. They are complex enough to
test pBox’s generality. To measure the performance of these
applications, for MySQL and PostgreSQL, we use sysbench
as the benchmark tool [42]. For Apache and Varnish, we use
the official Apache benchmark tool [25]. For Memcached, we
use Mutilate [44] as the benchmark tool.

6.1 Microbenchmark
We measure the costs of pBox operations with microbench-
mark. We write a test app that invokes different pBox APIs
for 10 million times. We run the app 10 times and calculate
the average latency for each operation.

Figure 10 shows the results. The pBox creation on average
takes 8.8 𝜇s, which is much faster than the pthread creation.
For the other operations, the latency is around 420 ns to 500 ns,
which is close to the getpid syscall latency.

6.2 Mitigating Real-World Issues
To evaluate the effectiveness of pBox, as Table 3 shows, we
collect 16 real-world intra-application performance interfer-
ence issues in the five software. All cases are collected from
blog posts, ServerFaults [67], and application bug trackers.
Only 4 cases are marked as bugs by developers. The rest do not
have associated bug reports and are usually design trade-offs.

We reproduce these cases, measure their performance on
vanilla Linux, and compare it with running them on the
pBox versions. In the pBoxes creation APIs, we use a relative
isolation rule (interference tolerance level) of 50%. We choose
50% because contention is inevitable in modern applications
and this goal is more realistic to consider the complexities
of performance behavior in our evaluated applications. We
evaluate the impact of different rule settings in Section 6.5.

Figure 11 shows the normalized latencies of the activities
(threads or processes) that originally suffered from perfor-
mance interference. pBox successfully mitigates (reduces the
latencies) 15 of 16 cases.

The degree of mitigation matters. Let 𝑇𝑖 denote the perfor-
mance with interference, 𝑇𝑜 denote without interference, and
𝑇𝑠 denote the performance under a solution. Then, the original
interference level is 𝑝 =

𝑇𝑖
𝑇𝑜
−1. The last column in Table 3 lists

𝑝 for each case. Most cases experience severe interference.
The interference level under a solution is 𝑞 =

𝑇𝑠
𝑇𝑜
− 1. Thus,

the interference reduction ratio 𝑟 = 𝑝−𝑞
𝑝

=
𝑇𝑖−𝑇𝑠
𝑇𝑖−𝑇𝑜 .

pBox significantly reduces the interference, by an average
of 86.3% and as large as 113.6%. For case c16, pBox does not
achieve effective mitigation, because the contention on the
particular application resource is not heavy. In addition, since
Memcached is a high-performance in-memory system, even
one or two additional syscalls can be costly. The overhead
of pBox exceeds the overall performance benefit from its
mitigation actions. Note that pBox’s improvements for cases
c2 and c15 are not negligible as Figure 11 might suggest. For
readability, the normalization in Figure 11 is calculated as
𝑇𝑠
𝑇𝑖

, which does not always reflect 𝑟 . For instance, in case c2,
𝑇𝑖 is 23.95ms; 𝑇𝑜 is 21.67ms; 𝑇𝑠 for pBox is 21.99ms. The
normalized latency in Figure 11 is 0.91 ( 21.9923.95 ), which seems
a small improvement. However, pBox improves the victim
activity’s latency to be close to its non-interference latency
(21.67ms vs. 21.99ms), achieving an 86% reduction ratio.

For tail latency, pBox reduces the 95𝑡ℎ percentile for 13
cases (Figure 12), with an average reduction ratio of 54.6%.

In terms of the impact on the noisy pBox. The latency of
the noisy pBox is only increased by an average of 34.1%.

pBox does not guarantee that the specified isolation goal
can always be achieved. From measuring the first five cases,
we observe that 94.6% of the activities meet the goal with
pBox, whereas this number drops to 48.2% without pBox.

6.3 Comparisons with Existing Solutions
We choose four state-of-the-art performance interference
mitigation solutions to compare with pBox: Linux cgroup [53],
PARTIES [10], Retro [48] and DARC [18].

For standard cgroup, we use a script to dynamically identify
threads that handle different types of workloads and put
them into different cgroups. It also identifies background task
threads and assigns them into one cgroup. Then the script
configures an even CPU usage quota among the cgroups. In this
way, a noisy workload or background task would not impact
the CPU usage in other groups. For PARTIES, we modify its
monitoring component to trace each client’s latency. We use a
script to identify threads that handle each client and configure
them as PARTIES’ control targets. PARTIES can then control
resource usage at the client level. Retro is designed for Java-
based distributed systems. We use the pBox codebase to
re-implement its core design to apply to C/C++ programs. We
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Id. Application Bug Virtual Resource Description Interf. Level

c1 (link) MySQL N custom lock SELECT FOR UPDATE query blocks other clients’ insert query 8.76
c2 (link) MySQL N custom mutex Inserting to tables without primary key would cause contention on global mutex 0.11
c3 (link) MySQL N integer and tickets Slow query blocks other clients’ requests when concurrency limit is reached 10.70
c4 (link) MySQL Y integer variable SERIALIZABLE isolation model causes significant overhead to SELECT locking 6.61
c5 (link) MySQL N UNDO log Background purge task blocks the client’s request when purging the UNDO log 15.35
c6 (link) PostgreSQL Y table index In-progress INSERT causes other queries to spend time on MVCC 39.16
c7 (link) PostgreSQL N table-level lock Select for update query blocks the request on other tables 1204.28
c8 (link) PostgreSQL N table-level lock LWlock waiters for exclusive mode are blocked by shared mode locker 1727.95
c9 (link) PostgreSQL N dead table rows Vacuum full process blocks other requests 419.14
c10 (link) PostgreSQL N write-ahead log A large WAL causes the group insertion blocking other requests 3.69
c11 (link) Apache Y fcgid request queue slow request in mod_fcgid blocks other fast connections 1621.12
c12 (link) Apache N apache thread pools Apache locks server if reaching maxclient 1429.21
c13 (link) Apache N php thread pool Apache server suddenly slows when the connection reaches pm.maxchildren 352.38
c14 (link) Varnish N varnish thread pool Slow request on visiting big objects blocks the requests on small objects 18045.79
c15 (link) Varnish Y system lock WRK_SumStat lock contention with high number of thread pools 0.68
c16 (link) Memcached N system lock lock contention in the cache replacement algorithm 0.73

Table 3. Description of 16 real-world intra-application interference cases we collected and reproduced in the five evaluated software. 𝐵𝑢𝑔: Y
means the interference case is from a bug report; N means the interference case is from some user post without a corresponding bug report.
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Figure 11. Avg. latency for each case normalized by the interference performance in the original application, compared to running the
application with (1) pBox (2) cgroup (3) PARTIES [10] (4) DARC [18] (5) Retro [48]. The interference is reduced if the normalized latency is
below 1. The lower it is, the higher the interference reduction ratio. Normalized latency above 1 means the interference becomes worse. The
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Figure 12. Normalized tail (95𝑡ℎ percentile) latency for each case.
trace each activity’s resource usage including lock and CPU,
calculate the slowdown and load factor, and run Retro’s BFAIR
policy to throttle noisy requests. DARC provides request-level
scheduling. We extend its request classifiers to support four
request types for MySQL/PostgreSQL (Read, Write, Insert,
Delete) and two request types for Apache/Varnish/Memcached
(Post, Get). We implement a worker for each application to
translate a PSP request into an app request.

Figure 11 shows the result. Cgroup reduces the interference
for 3 cases by 33.6% on average and a max of 77.8%. In
the remaining 13 cases, it makes the interference worse by
-22.5% on average and worst by -94.6%. DARC helps 3 cases
by 61.6% on average and a max of 90.8%. In the remaining
13 cases, it makes the performance worse for 535.8% and a
max of 5716.5%. The reason is that DARC and cgroup limit a
noisy activity’s hardware resources, but the victim activities
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Figure 13. The number of penalty actions, interference level, and
steps for the penalty length to converge to a fixed point. The score-
based and gap-based adaptive policies are dynamically chosen.

are waiting for virtual resources from the noisy activity and
need to wait longer. Retro helps 5 cases by 38.8% on average
and a max of 57.8%. In the remaining 11 cases, it makes
the performance worse by -48.6% on average and worst by
-280.8%. The reason that Retro can help most cases is partially
because we implemented its control points and throttling on
top of the pBox abstraction and our pBox calls would avoid bad
penalty timing. PARTIES helps 3 cases by 13.5% on average
and a max of 28.6%. It makes 13 cases worse by -176.2% on
average and worst by -716.7%.

https://dba.stackexchange.com/questions/64401/optimizing-a-large-number-of-insert-select-statements/64402#64402
https://www.percona.com/blog/2013/10/18/innodb-scalability-issues-tables-without-primary-keys/
https://dba.stackexchange.com/questions/81204/hyperthreading-mysql-innodb-thread-concurrency-performance
https://www.percona.com/blog/2015/01/14/mysql-performance-implications-of-innodb-isolation-modes/
https://www.percona.com/blog/2014/12/17/innodbs-multi-versioning-handling-can-be-achilles-heel/
https://www.postgresql.org/message-id/flat/21750.1371401995%40sss.pgh.pa.us#558bfea5bf549a23a05bb4a5c2077a3a
https://dba.stackexchange.com/questions/188169/select-for-update-locking-other-tables-in-postgresql
https://www.postgresql.org/message-id/flat/20191209221036.GA17421%40eta-carinae
https://www.postgresql.org/message-id/flat/CY1PR02MB20092E59D642E159D9C9BE8EF95B0%40CY1PR02MB2009.namprd02.prod.outlook.com
https://postgrespro.com/list/thread-id/1867581#CA+TgmobWdBcbuipWPsbHSbf+-KDmatnYQYZ=AKAjU6ALB5m+hQ@mail.gmail.com
https://serverfault.com/questions/618196/apache-web-server-intermittent-stalls
https://serverfault.com/questions/133561/apache-reaching-maxclients-and-locking-the-server
https://serverfault.com/questions/1079155/php-scripts-suddenly-load-very-slow-on-apache
https://stackoverflow.com/questions/70259212/varnish-max-threads-hit-backend-and-session-connections-issue
https://varnish-cache.org/lists/pipermail/varnish-bugs/2014-May/006029.html
https://memcached.org/blog/modern-lru
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Figure 14. Penalty lengths pBox applied in interference mitigation.

c1 c3 c4 c5 c6 c7 c8 c9 c10

Fixed (10 ms) 123.63 0.36 81.52 9.37 2.18 104.16 16.28 35.74 0.49
Fixed (100 ms) 49.50 0.56 29.72 3.65 2.41 13.71 8.15 13.42 0.62
Adaptive 1.28 0.35 1.24 3.29 2.64 0.65 0.70 1.28 0.56

Table 4. Average latency (ms) for nine evaluated cases using a fixed
penalty versus using the default adaptive penalty design.
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Figure 15. Interference reduction ratios for ten cases under different
isolation rules from 25% to 125%. The default is 50%.

6.4 Penalty Action
To understand the internals of pBox’s mitigation, we measure
the number of penalty actions in 8 cases. Figure 13 shows
the result. In general, pBox takes more penalty actions under
a high interference level (listed in Table 3). However, if the
interference level is too high, fewer penalty actions may occur,
because that can cause pBox to choose the gap-based adaptive
policy, which increases the penalty length for each action and
thus decreases the number of actions.

Figure 13 also shows the average number of steps that the
adaptive penalty policy takes to converge (the penalty length
reaches a fixed point). In cases where the gap-based policy is
chosen (primarily), the convergence step is 10 times smaller
than the step in cases where the score-based policy is chosen.

Figure 14 shows the penalty length distribution in the 8
cases. The cases choosing the gap-based policy have longer
penalty lengths than the cases choosing the score-based policy.

6.5 Adaptive Penalty and Rule Sensitivity
We compare our adaptive penalty design (Section 4.4.2) with
using fixed penalties of 10ms and 100ms. Table 4 shows that
the adaptive penalty performs better for 7 out of 9 cases.

Users specify an isolation rule (goal) when creating pBox
(Section 4.1). This setting can affect the detection and mitiga-
tion decisions. The experiment in Figure 11 uses the default
50%. We test 10 cases under different settings. Figure 15
shows the result. In general, a larger (more relaxed) isolation
level can decrease the mitigation effectiveness.

The case c2 shows higher sensitivity to the rule settings.
This is because the interference in this case is less severe—the
interference level 𝑇𝑓 is lower than two for c2 but greater than
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Figure 16. Overhead under different workload settings. r1 to r64:
read-intensive workloads with one to 64 clients. w1 to w64: write-
intensive workloads with one to 64 clients.

five for other cases. More relaxed isolation rules would cause
fewer penalty actions, resulting in a lower reduction ratio.

6.6 Overhead
We measure the end-to-end overhead of pBox to an applica-
tion’s performance in normal conditions. We use the same
application versions and configurations as Section 6.2, but
we run normal workloads instead, which are assumed to not
introduce significant performance interference. Specifically,
we generate OLTP read-only and write-only workloads for
MySQL, PostgreSQL using sysbench [42], with an initial data-
base of 64 tables and 1 K records per table. For Memcached, we
generate read-intensive and write-intensive workloads based
on Facebook’s USR and VAR request distribution [5]. Each
workload has eight settings with varying numbers of clients
(Figure 16). We run Apache and Varnish under settings r1 to
r64. The workload is serving HTML pages based on Varnish
high-availability benchmark [77]. We run each setting for 90 s
and compare the average latency with and without pBox.

Figure 16 shows the results. pBox introduces an overhead
of 1.1%, 2.3%, 2.2%, 1.9%, and 3.6% on average to MySQL,
PostgreSQL, Apache, Varnish, and Memcached, respectively.
Interestingly, in several settings, pBox reduces the latency
because of minor interference being mitigated.

The overhead does not significantly increase as the con-
currency level increases. We use hashtables to store virtual
resources. For each resource, we use a list to store the current
waiters. Adding a pBox to this list has a constant cost. Remov-
ing a pBox and finding a victim pBox have costs linear to the
number of waiters. If many pBoxes are waiting on a virtual
resource, it is likely that performance interference already
occurs. In this case, the cost of finding a victim is shadowed
by the gains of mitigating the interference.

We also measure the 99𝑡ℎ percentile latency. The overhead
is 2.0%, 2.3%, 1.0%, 5.3%, and 2.6% on average to MySQL,
PostgreSQL, Apache, Varnish, and Memcached, respectively.

6.7 Usage Effort
Table 5 shows the SLOC we add to the five applications for
using pBox. MySQL’s changes are the largest, mainly because
it defines a number of custom virtual resource types that we
need to cover. But the changes overall are small, especially
considering the applications’ large codebase sizes (Table 2).
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Software Inspected
Functions

State Events SLOC
AddedManual Detected

MySQL 83 57 40 (70%) 192
PostgreSQL 71 40 44 (110%) 127
Apache 43 12 8 (66%) 71
Varnish 53 16 12 (75%) 77
Memcached 22 14 12 (85%) 70

Table 5. Functions we inspected to use pBox, state events we manually
found to add update_pbox calls, and total SLOC added to the app
code. Detected is the number of state events found by our analyzer.

Since we are not the application developers, we need to read
the source code first. Table 5 shows the number of functions
we inspected to determine the places for using pBox. It takes
a graduate student a few days to complete the task for each
application. Developers can likely use pBox more quickly.

We also test our static analyzer (Section 4.5). Table 5 reports
the state events detected by the static analyzer. On average,
the analyzer detects 81% of our manually found state events.
For PostgreSQL, the analyzer detects four more points that
we did not find during our manual porting.

For the remaining 19% of state events, they have the same
heuristic as the others. The reason our static analyzer failed to
identify them is that it only checks direct wrappers of waiting
functions, but in these cases the callchain to a waiting function
is deep. Additionally, some loop condition variable is the
return value of a function call, and our current analyzer does
not support checking if a returned variable is shared or not.

When an application evolves, if its activity boundaries
and virtual resource usage code are changed (typically in a
major upgrade), developers need to update the pBox calls
accordingly. This is similar to how developers need to adjust
the synchronization points when they make major changes to
a multi-threaded program. Developers can re-run our static
analyzer to assist them with updating the pBox calls.

6.8 Mistake Tolerance
We evaluate whether pBox can tolerate mistakes in using pBox
APIs. We randomly remove 10% of the update_pbox calls
in our pBox-version MySQL and rerun the experiment in
Section 6.2. This process is repeated five times. On average,
4 cases (out of 5 cases) show positive mitigation, with an
average interference reduction ratio of 92.1%, which is slightly
lower than the result (93.9%) under correct usage.

7 Discussions
Kernel vs. user level. Where to implement pBox (appli-
cation, library, and kernel) has performance, transparency,
control, and flexibility trade-offs. Our current kernel-heavy
implementation is motivated by several considerations:
• pBox is essentially an effort to improve the scheduling

of application activities for performance isolation, which
is an important property that the OS should provide to
applications. Many works [26, 29, 38, 51, 53] have been

implemented in the kernel to achieve performance isolation.
However, they are insufficient to address the prevalent
intra-application performance interference issues.
• Intra-app performance interference can occur due to system-

level resources contention like futex and network queues.
In Table 3, five cases are contending on such resources.
Certain application virtual resources are proxies for system
resources. For example, the table lock in MySQL is im-
plemented using pthread_mutex, which relies on the futex

syscall. The kernel-level pBox can directly modify the corre-
sponding kernel code (e.g., futex implementation), allowing
us to transparently trace state events without requiring
developers to add update_pbox calls in application code.
• The timing of pBox actions is easier and more effective

to enforce in the kernel. The actions’ impact on the Linux
scheduler is more predictable than user-level actions. The
kernel-level implementation also allows future extensions
using other scheduling actions, such as changing priorities.
However, for certain applications that use pure user-level

queues for task management, it is beneficial to provide a
library-heavy pBox implementation or design upcall APIs
similar to scheduler activations [2].
Testing. To test whether the added pBox API calls are ef-
fective, developers can create performance benchmarks that
reproduce past interference issues. Another testing strategy
is to use a strict isolation goal in performance testing. Large
software often experiences minor forms of intra-app perfor-
mance interference. The pBox traces should show that some
mitigation actions have been taken. Additionally, since the
pBox APIs are designed to be simple, developers can easily
add pBox code to missed code regions during or after a produc-
tion performance issue, which will benefit future performance
isolation. This flexibility enables iterative instrumentation.
Future Work. Like other performance interference mitigation
work, pBox is a best-effort solution. It only reduces interference
and does not guarantee that a given isolation goal will always
be satisfied. How to provide strict performance isolation
for large software is an open challenge. A related area of
improvement is to provide a more rigorous analysis of the
pBox’s actions, such as applying queuing theory [31]. pBox
currently does not support distributed systems. Extensions to
the tracing and detection algorithm as well as coordination on
mitigation actions are needed for the support.

8 Related Work
Performance Interference. Performance interference has
been extensively investigated in the contexts of cloud and
virtualization environment [1, 4, 17, 41, 70, 71]. The interfer-
ence occurs due to contentions on various shared hardware
resources including CPU [27, 34, 47, 86], storage [45, 62, 78],
memory [26, 49, 58, 83], and network [28, 69].

Numerous solutions [10, 11, 26, 34, 35, 47, 54, 58, 64,
68, 86] are proposed to mitigate interference by adjusting
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hardware resources. For instance, PerfIso [34] dynamically
restricts the cores for batch jobs to protect the performance
of latency-sensitive jobs. PARTIES [10] boots allocation of
hardware resources for latency-critical services upon detecting
QoS violations. Caladan [26] uses memory bandwidth and
request processing times as the control signals to detect
memory and CPU interference, and restricts CPU cores for
antagonist jobs.

We focus on intra-application performance interference,
which is caused by internal activities contending on application-
level resources such as buffers or tickets. The contention can
be invisible to existing solutions.
Fine-grained Resource Management. A long history of
supporting fine-grained resource management exists in the
context of real-time and multimedia operating systems [13, 24,
37, 55, 56]. Much of the work focuses on charging resource
consumption to an application activity that is across the
process or thread boundary. Similar efforts exist in general-
purpose operating systems and software [7, 36, 46, 48, 53, 65].
A representative work is the resource container abstraction [7],
which allows developers to limit an application activity’s
resource usage. It is modernized by Linux cgroup [53]. All
these efforts still mainly target hardware resources, while
pBox is about contention on virtual resources. Moreover, pBox
focuses on cross-activity interference instead of managing
each activity independently. It uses virtual-resource-aware
scheduling to minimize the interference.

Retro [48] attributes the resource usage to different work-
flows and allows developers to write their own scheduling
policies to control resource allocations. While Retro can trace
some application resources (locks and thread pools), it mainly
targets conventional interference due to multi-tenancy. pBox
covers a wide variety of virtual resources. It does not target
resource allocation, but instead focuses on fine-grained per-
formance isolation and may take mitigation action at any time
during an application activity’s execution.
Server Overload Control. Applications may experience
performance overload due to excessive requests. Solutions
typically use admission control techniques [9, 11, 12, 20,
22, 30, 40, 79] that apply rate limiting on the client side or
drop requests at the proxy or server side. Intra-application
performance interference is an orthogonal problem. It can
happen even when the server is not overloaded. pBox does not
throttle requests in providing performance isolation.
Application-Specific Scheduling. Customizing scheduling
based on an application’s workload characteristics can greatly
improve performance, thus motivating works to provide this
capability [18, 33, 38, 39, 50, 59, 61]. For example, Syrup [39]
allows developers to easily write application-specific sched-
uling policies. DARC [18] profiles application requests and
leaves some cores idle when there are no short requests. pBox
is orthogonal to these efforts. It is not a scheduler to allocate
CPU and other hardware resources. It only takes action when

an activity’s isolation goal is in danger of being violated.
Also, these solutions often assume independent requests, so
hardware resources can be arbitrarily scheduled. But requests
(and background tasks) involved in intra-app interference have
dependencies on virtual resources, thus simply adjusting hard-
ware resources do not help and can worsen the interference.
SLO Guarantees. Some projects target SLO enforcement in
multi-tenancy. PSLO [45] enforces tail latency and throughput
for consolidated VM storage by controlling I/O concurrency
level and arrival rate for each VM. FIRM [63] uses machine
learning methods to detect SLO violations in microservices,
upon which it adjusts the hardware resource provisioning.
pBox aims for fine-grained performance isolation. Overall
SLO may not detect interference among application activities.
Reacting after SLO violation can also be too late, because the
contended virtual resources cannot be directly reclaimed.
Synchronization Optimization. Extensive efforts optimize
locks and other synchronization primitives, e.g., scalable
spin locks [52], NUMA-aware locks [16], user-defined kernel
locks [60]. Many intra-app interference issues are not simply
due to poor synchronization or scalability bottlenecks. While
locks often appear in them, the virtual resources that cause
the interference are diverse and involve complex interactions
among application activities. Thus, optimizing locks is insuffi-
cient. pBox focuses on end-to-end performance and isolation
for an activity instead of an individual lock.
Performance Debugging. It is notoriously difficult to debug
complex performance issues in large software. Many profilers
and analyzers [6, 8, 15, 32, 73, 80, 81, 84] are therefore
proposed to help developers with this task. pBox targets
performance issues caused by interference among application
activities and provides performance isolation at runtime. The
log traces from pBox can provide useful insights for developers
to understand a performance interference issue.

9 Conclusion
This paper explores pushing the performance isolation bound-
aries into an application. We propose an abstraction called
pBox. pBox captures general state events about diverse virtual
resources, detects imminent interference among application
activities, and carefully chooses actions to achieve the perfor-
mance isolation goal. We apply pBox on five large applications
and evaluate it with 16 real-world intra-app interference issues.
pBox significantly reduces the interference for most cases.
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