
Capturing and Enhancing In Situ System Observability
for Failure Detection

Peng Huang
Johns Hopkins University

Chuanxiong Guo
ByteDance Inc.

Jacob R. Lorch Lidong Zhou
Microsoft Research

Yingnong Dang
Microsoft

Abstract
Real-world distributed systems suffer unavailability due
to various types of failure. But, despite enormous effort,
many failures, especially gray failures, still escape de-
tection. In this paper, we argue that the missing piece
in failure detection is detecting what the requesters of a
failing component see. This insight leads us to the design
and implementation of Panorama, a system designed to
enhance system observability by taking advantage of the
interactions between a system’s components. By pro-
viding a systematic channel and analysis tool, Panorama
turns a component into a logical observer so that it not
only handles errors, but also reports them. Furthermore,
Panorama incorporates techniques for making such ob-
servations even when indirection exists between compo-
nents. Panorama can easily integrate with popular dis-
tributed systems and detect all 15 real-world gray fail-
ures that we reproduced in less than 7 s, whereas existing
approaches detect only one of them in under 300 s.

1 Introduction

Modern cloud systems frequently involve numerous
components and massive complexity, so failures are
common in production environments [17, 18, 22]. De-
tecting failures reliably and rapidly is thus critical to
achieving high availability. While the problem of fail-
ure detection has been extensively studied [8, 13, 14, 20,
24, 29, 33, 34, 47], it remains challenging for practition-
ers. Indeed, system complexity often makes it hard to
answer the core question of what constitutes a failure.

A simple answer, as used by most existing detection
mechanisms, is to define failure as complete stoppage
(crash failure). But, failures in production systems can
be obscure and complex, in part because many sim-
ple failures can be eliminated through testing [49] or
gradual roll-out. A component in production may ex-
perience gray failure [30], a failure whose manifesta-
tion is subtle and difficult to detect. For example, a

critical thread of a process might get stuck while its
other threads including a failure detector keep running.
Or, a component might experience limplock [19], ran-
dom packet loss [26], fail-slow hardware [11, 25], silent
hanging, or state corruption. Such complex failures are
the culprits of many real-world production service out-
ages [1, 3, 4, 6, 10, 23, 30, 36, 38].

As an example, ZooKeeper [31] is a widely-used sys-
tem that provides highly reliable distributed coordina-
tion. The system is designed to tolerate leader or fol-
lower crashes. Nevertheless, in one production deploy-
ment [39], an entire cluster went into a near-freeze status
(i.e., clients were unable to write data) even though the
leader was still actively exchanging heartbeat messages
with its followers. That incident was triggered by a tran-
sient network issue in the leader and a software defect
that performs blocking I/Os in a critical section.

Therefore, practitioners suggest that failure detection
should evolve to monitor multi-dimensional signals of a
system, aka vital signs [30, 37, 44]. But, defining signals
that represent the health of a system can be tricky. They
can be incomplete or too excessive to reason about. Set-
ting accurate thresholds for these signals is also an art.
They may be too low to prevent overreacting to benign
faults, or too high to reliably detect failures. For exam-
ple, an impactful service outage in AWS was due to a la-
tent memory leak, which caused the system to get stuck
when serving requests and eventually led to a cascading
outage [10]. Interestingly, there was a monitor for system
memory consumption, but it triggered no alarm because
of “the difficulty in setting accurate alarms for a dynamic
system” [10]. These monitoring challenges are further
aggravated in a multi-tenant environment where both the
system and workloads are constantly changing [44].

In this paper, we advocate detecting complex produc-
tion failures by enhancing observability (a measure of
how well components’ internal states can be inferred
from their external interactions [32]). While defining the
absolute health or failure of a system in isolation is tricky,

1

void syncWithLeader(long newLeaderZxid) {

QuorumPacket qp = new QuorumPacket();

readPacket(qp);

try {

if (qp.getType() == Leader.SNAP) {

deserializeSnapshot(leaderIs);

String sig = leaderIs.read("signature");

if (!sig.equals("BenWasHere"))

throw new IOException("Bad signature");

} else {

LOG.error("Unexpected leader packet.");

System.exit(13);

}

} catch (IOException e) {

LOG.warn("Exception sync with leader", e);

sock.close();

}

}

Listing 1: A follower requesting a snapshot from the leader
tries to handle or log errors but it does not report errors.

modern distributed systems consist of many highly inter-
active components across layers. So, when a component
becomes unhealthy, the issue is likely observable through
its effects on the execution of some, if not all, other com-
ponents. For example, in the previous ZooKeeper inci-
dent, even though the simple heartbeat detectors did not
detect the partial failure, the Cassandra process experi-
enced many request time-outs that caused its own un-
served requests to rapidly accumulate. Followers that re-
quested snapshots from the leader also encountered ex-
ceptions and could not continue. Thus, errors encoun-
tered in the execution path of interactive components en-
hance the observability of complex failures.

Even though an interactive component (a requester)
is well-placed to observe issues of another component
(a provider) when it experiences errors, such a requester
is often designed to handle that error but not report it
(e.g., Listing 1). For example, the requester may re-
lease a resource, retry a few times, reset its state, use
a cached result (i.e., be fail-static), or exit. This tendency
to prioritize error handling over error reporting is possi-
bly due to the modularity principle of “separation of con-
cern” [41, 42], which suggests that components should
hide as much information as they can and that failure de-
tection and recovery should be each component’s own
job. Even if a component has incentive to report, it may
not have a convenient systematic mechanism to do so. It
can write errors in its own logs to be collected and aggre-
gated by a central service, as is done in current practice.
The correlation, however, usually happens in an offline
troubleshooting phase, which is too late.

We present Panorama, a generic failure detection
framework that leverages and enhances system observ-
ability to detect complex production failures. It does so
by breaking detection boundaries and systematically ex-
tracting critical observations from diverse components.

Panorama provides unified abstractions and APIs to re-
port observations, and a distributed service to selectively
exchange observations. Also, importantly, Panorama
keeps the burden on developers low by automatically
inserting report-generation code based on offline static
analysis. In this way, Panorama automatically converts
every component into an observer of the components it
interacts with. This construction of in-situ observers dif-
ferentiates Panorama from traditional distributed crash
failure detection services [34, 47], which only measure
superficial failure indicators.

In applying Panorama to real-world system software,
we find some common design patterns that, if not treated
appropriately, can reduce observability and lead to mis-
leading observations. For example, if a requester submits
requests to a provider, but an indirection layer temporar-
ily buffers the request, the request may appear successful
even though the provider has failed. This can cause the
requester to report positive evidence about the provider.
We study such common design patterns and character-
ize their impact on system observability (§4). Based on
this, we enhance Panorama to recognize these patterns
and avoid their effects on observability.

For failure detection, Panorama includes a decision
engine to reach a verdict on the status of each component
based on reported observations. Because these reports
come from errors and successes in the execution paths
of requester components instead of artificial, non-service
signals, our experience suggests that a simple decision
algorithm suffices to reliably detect complex failures.

We have implemented the Panorama system in Go and
the static analyzer on top of Soot [46] and AspectJ [2].
Our experiences show that Panorama is easy to integrate
with popular distributed systems including ZooKeeper,
Cassandra, HDFS, and HBase. Panorama significantly
outperforms existing failure detectors in that: (1) it de-
tects crash failures faster; (2) it detects 15 real-world
gray failures in less than 7 s each, whereas other detectors
only detect one in 86 s; (3) Panorama not only detects,
but also locates failures. Our experiments also show that
Panorama is resilient to transient failures and is stable
in normal operations. Finally, Panorama introduces only
minor overhead (less than 3%) to the systems we evalu-
ate it on.

2 Problem Statement

We consider failure detection in the context of a large dis-
tributed system S composed of several subsystems. Each
subsystem has multiple components. In total, S contains
n processes P1,P2, . . . ,Pn, each with one or more threads.
The whole system lies within a single administrative do-
main but the code for different system components may
be developed by different teams. For example, a stor-

2

age system may consist of a front-end tier, a distributed
lock service, a caching middleware, a messaging service,
and a persistence layer. The latter subsystem include
metadata servers, structured table servers, and extent data
nodes. An extent data node may be multi-threaded, with
threads such as a data receiver, a data block scanner, a
block pool manager, and an IPC-socket watcher. We as-
sume the components trust each other, collectively pro-
viding services to external untrusted applications.

The main goal of failure detection is to correctly re-
port the status of each component; in this work the only
components we consider are processes and threads. Tra-
ditional failure detectors focus on crash failure, i.e., us-
ing only statuses UP and DOWN. We aim to detect not only
crash failure but also gray failure, in which components
experience degraded modes “between” UP and DOWN. The
quality of a failure detector is commonly characterized
by two properties: completeness, which requires that if
a component fails, a detector eventually suspects it; and
accuracy, which requires that a component is not sus-
pected by a detector before it fails. Quality is further
characterized by timeliness, i.e., how fast true failures are
detected. Failure detectors for production systems should
also have good localization, i.e., ease of pinpointing each
failure in a way that enables expedient corrective action.

3 Panorama System

3.1 Overview
At a high level, Panorama takes a collaborative approach:
It gathers observations about each component from dif-
ferent sources in real time to detect complex production
failures. Collaborative failure detection is not a new idea.
Many existing crash-failure detectors such as member-
ship services exchange detection results among multi-
ple components using protocols like gossip [47]. But,
the scope of where the detection is done is usually lim-
ited to component instances with similar functionality or
roles in a particular layer. Panorama pushes the detec-
tion scope to an extreme by allowing any thread in any
process to report evidence, regardless of its role, layer,
or subsystem. The resulting diverse sources of evidence
enhance the observability of complex failures.

More importantly, instead of writing separate monitor-
ing code that measures superficial signals, Panorama’s
philosophy is to leverage existing code that lies near the
boundaries between different components. Examples of
such code include when one thread calls another, and
when one process makes an RPC call to another. This
captures first-hand observations, especially runtime er-
rors that are generated from the executions of these code
regions in production. When Panorama reports a failure,
there is concrete evidence and context to help localize

Panorama observer

Execution flow

Submit observation

LOS Local Observation Store

Observation exchange

LOS

TableA

LOS

FrontA

LOS

ManageA

{ }

observability

analysis

{ }
Source

Code

Offline

LOS

Thread
C

Thread
A

Thread
B

Production

Application

LOS

CacheA

Verdict
Server

(Section 3)(Section 5)

Figure 1: Overview of Panorama. Each Panorama instance runs
at the same endpoint with the monitored component.

where the failure happened.
Figure 1 shows an overview of Panorama. Panorama

is a generic detection service that can be plugged into
any component in a distributed system. It provides uni-
fied abstractions to represent observations about a com-
ponent’s status, and a library for reporting and query-
ing detection results. For scalability, we use a decentral-
ized architecture: for each Pi in a monitored system, a
co-located Panorama instance (a separate process) main-
tains a Local Observation Store (LOS) that stores all the
observations that are made either by or about Pi. A local
decision engine in the instance analyzes the observations
in that LOS and makes a judgment about the process’s
status. A central verdict server allows easy querying of,
and arbitration among, these decentralized LOSes.

The Panorama service depends on many logical ob-
servers within the running components in the monitored
system. Unlike traditional failure detectors, these logi-
cal observers are not dedicated threads running detection
checks. Rather, they are diverse hooks injected into the
code. These hooks use a thin library to collect and sub-
mit observations to the LOS via local RPC calls. They
are inserted offline by a tool that leverages static analy-
sis (§5). To achieve timeliness, the observations are re-
ported in real time as Pi executes. Panorama observers
collect evidence not only about the locally attached com-
ponent, but, more importantly, about other components
that the observer interacts with. However, if Pi never in-
teracts with Pj, Pi will not put observations about Pj into
its LOS. Panorama runs a dissemination protocol to ex-
change observations among a clique of LOSes that share
common interaction components.

3.2 Abstractions and APIs

To be usable by arbitrary distributed system components,
Panorama must provide a unified way to encapsulate ob-

3

Component a process or thread
Subject a component to be monitored
Observer a component monitoring a subject

Status the health situation of a subject
Observation evidence an observer finds of a subject’s status
Context what an observer was doing when it made an

observation
Verdict a decision about a subject’s status, obtained by

summarizing a set of observations of it

Table 1: Abstractions and terms used in Panorama.

servations for reporting. We now describe our core ab-
stractions and terms, summarized in Table 1.

As discussed earlier, the only components we consider
are processes and threads. A component is an observer
if it makes observations and a subject if it is observed;
a component may be both an observer and a subject. A
status is a categorization of the health of a subject; it can
be only a small pre-determined set of values, including
HEALTHY, DEAD, and a few levels of UNHEALTHY. Another
possible value is PENDING, the meaning and use of which
we will discuss in §5.4.

When an observer sees evidence of a subject’s status,
that constitutes an observation. An observation contains
a timestamp of when the observation occurred, the iden-
tities of the observer and subject, and the inferred status
of the subject. It also contains a context describing what
the observer was doing when it made the observation, at a
sufficient granularity to allow Panorama to achieve fine-
grained localization of failures. For instance, the context
may include the method the observer was running, or the
method’s class; the API call the observer was making
to the subject; and/or the type of operation, e.g., short-
circuit read, snapshot, or row mutation. A verdict is a
summary, based on a decision algorithm, of a set of ob-
servations of the same subject.

Each Panorama instance provides an API based on the
above abstractions. It can be invoked by a local compo-
nent, by another Panorama instance, or by an administra-
tion tool. When a component decides to use Panorama,
it registers with the local Panorama instance and receives
a handle to use for reporting. It reports observations us-
ing a local RPC ReportObservation; when it is done re-
porting it unregisters. A Panorama instance can register
multiple local observers. If a component does not intend
to report observations but merely wants to query compo-
nent statuses, it need not register.

Each Panorama instance maintains a watch list: the set
of subjects for which it keeps track of observations. By
default, Panorama automatically updates this list to in-
clude the components that registered observers interact
with. But, each observer can explicitly select subjects
for this list using StartObserving and StopObserving. If

another observer in another Panorama instance makes an
observation about a subject in the watch list, that obser-
vation will be propagated to this instance with a remote
RPC LearnObservation. Panorama calls JudgeSubject

each time it collects a new observation, either locally or
via remote exchange.

3.3 Local Observation Store
Each Panorama instance maintains a Local Observation
Store (LOS) that stores all observation reports made by
colocated components. The subjects of these reports in-
clude both local and remote components.

The LOS consists of two main structures: the raw ob-
servation store and the verdict table. The LOS partitions
the raw observation store by subject into multiple tables
for efficient concurrent access. Each record in a subject’s
table corresponds to a single observer; it stores a list of
the n most recent observations of that subject made by
that observer. The LOS is kept in memory to enable effi-
cient access; asynchronously, its content is persisted to
local database to preserve the full observation history,
for facilitating troubleshooting later. The raw observa-
tion store is synchronized with that of other Panorama in-
stances that share common subjects. Therefore, an LOS
contains observations made both locally and remotely.

A local decision engine analyzes the raw observation
store to reach a verdict for each subject. This decision
result is stored in the verdict table, keyed by subject. The
verdict table is not synchronized among Panorama in-
stances because it does not have to be: the decision al-
gorithm is deterministic. In other words, given synchro-
nized raw observations, the verdict should be the same.
To enable convenient queries over the distributed ver-
dict tables to, e.g., arbitrate among inconsistent verdicts,
Panorama uses a central verdict server. Note, though,
that the central verdict server is not on any critical path.

Including old observations in decisions can cause mis-
leading verdicts. So, each observation has a Time-to-
Live parameter, and a background garbage collection
(GC) task runs periodically to retire old observations.
Whenever GC changes the observations of a subject, the
decision engine re-computes the subject’s verdict.

3.4 Observers
Panorama does not employ dedicated failure detectors.
Instead, it leverages code logic in existing distributed-
system components to turn them into in-situ logical ob-
servers. Each logical observer’s main task is still to pro-
vide its original functionality. As it executes, if it en-
counters an error related to another component, in addi-
tion to handling the error it will also report it as an ob-
servation to Panorama. There are two approaches to turn

4

a component into a Panorama observer. One is to insert
Panorama API hooks into the component’s source code.
Another is to integrate with the component’s logs by con-
tinuously parsing and monitoring log entries related to
other components. The latter approach is transparent to
components but captures less accurate information. We
initially adopted the latter approach by adding plug-in
support in Panorama to manage log-parsing scripts. But,
as we applied Panorama to more systems, maintaining
these scripts became painful because their logging prac-
tices differed significantly. Much information is also un-
available in logs [50]. Thus, even though we still sup-
port logging integration, we mainly use the instrumen-
tation approach. To relieve developers of the burden of
inserting Panorama hooks, Panorama provides an offline
analysis tool that does the source-code instrumentation
automatically. §4 describes this offline analysis.

3.5 Observation Exchange
Observations submitted to the LOS by a local observer
only reflect a partial view of the subject. To reduce bias
in observations, Panorama runs a dissemination proto-
col to propagate observations to, and learn observations
from, other LOSes. Consequently, for each monitored
subject, the LOS stores observations from multiple ob-
servers. The observation exchange in Panorama is only
among cliques of LOSes that share a subject. To achieve
selective exchange, each LOS keeps a watch list, which
initially contains only the local observer. When a local
observer reports an observation to the LOS, the LOS will
add the observation’s subject to the watch list to indicate
that it is now interested in others’ observations about this
subject. Each LOS also keeps an ignore list for each sub-
ject, which lists LOSes to which it should not propagate
new observations about that subject. When a local ob-
servation for a new subject appears for the first time, the
LOS does a one-time broadcast. LOSes that are not inter-
ested in the observation (based on their own watch lists)
will instruct the broadcasting LOS to include them in its
ignore list. If an LOS later becomes interested in this
subject, the protocol ensures that the clique members re-
move this LOS from their ignore lists.

3.6 Judging Failure from Observations
With numerous observations collected about a subject,
Panorama uses a decision engine to reach a verdict and
stores the result in the LOS’s verdict table. A simple
decision policy is to use the latest observation as the ver-
dict. But, this can be problematic since a subject experi-
encing intermittent errors may be treated as healthy. An
alternative is to reach an unhealthy verdict if there is any
recent negative observation. This could cause one biased

observer, whose negative observation is due to its own
issue, to mislead others.

We use a bounded-look-back majority algorithm, as
follows. For a set of observations about a subject, we first
group the observations by the unique observer, and ana-
lyze each group separately. The observations in a group
are inspected from latest to earliest and aggregated based
on their associated contexts. For an observation being
inspected, if its status is different than the previously
recorded status for that context, the look-back of obser-
vations for that context stops after a few steps to favor
newer statuses. Afterwards, for each recorded context,
if either the latest status is unhealthy or the healthy sta-
tus does not have the strict majority, the verdict for that
context is unhealthy with an aggregated severity level.

In this way, we obtain an analysis summary for each
context in each group. To reach a final verdict for each
context across all groups, the summaries from different
observers are aggregated and decided based on a sim-
ple majority. Using group-based summaries allows in-
cremental update of the verdict and avoids being biased
by one observer or context in the aggregation. The de-
cision engine could use more complex algorithms, but
we find that our simple algorithm works well in practice.
This is because most observations collected by Panorama
constitute strong evidence rather than superficial signals.

The PENDING status (Section 4.3) needs additional han-
dling: during the look-back for a context, if the current
status is HEALTHY and the older status is PENDING, that
older PENDING status will be skipped because it was only
temporary. In other words, that partial observation is now
complete. Afterwards, a PENDING status with occurrences
exceeding a threshold is downgraded to UNHEALTHY.

4 Design Pattern and Observability

The effectiveness of Panorama depends on the hooks
in observers. We initially designed a straightforward
method to insert these hooks. In testing it on real-world
distributed systems, however, we found that component
interactions in practice can be complex. Certain interac-
tions, if not treated appropriately, will cause the extracted
observations to be misleading. In this section, we first
show a gray failure that our original method failed to de-
tect, and then investigate the reason behind the challenge.

4.1 A Failed Case

In one incident of a production ZooKeeper service, ap-
plications were experiencing many lock timeouts [23].
An engineer investigated the issue by checking metrics
in the monitoring system and found that the number of
connections per client had significantly increased. It ini-

5

tially looked like a resource leak in the client library, but
the root cause turned out to be complicated.

The production environment used IPSec to secure
inter-host traffic, and a Linux kernel module used Intel
AES instructions to provide AES encryption for IPSec.
But this kernel module could occasionally introduce data
corruption with Xen paravirtualization, for reasons still
not known today. Typically the kernel validated packet
checksums and dropped corrupt packets. But, in IPSec,
two checksums exist: one for the IP payload, the other
for the encrypted TCP payload. For IPSec NAT-T mode,
the Linux kernel did not validate the TCP payload check-
sum, thereby permitting corrupt packets. These were de-
livered to the ZooKeeper leader, including a corrupted
length field for a string. When ZooKeeper used the
length to allocate memory to deserialize the string, it
raised an out-of-memory (OOM) exception.

Surprisingly, when this OOM exception happened,
ZooKeeper continued to run. Heartbeats were normal
and no leader re-election was triggered. When eval-
uating this incident in Panorama, no failure was re-
ported either. We studied the ZooKeeper source code
to understand why this happened. In ZooKeeper, a re-
quest is first picked up by the listener thread, which
then calls the ZooKeeperServer thread that further in-
vokes a chain of XXXRequestProcessor threads to pro-
cess the request. The OOM exception happens in the
PrepRequestProcessor thread, the first request proces-
sor. The ZooKeeperServer thread invokes the interface
of the PrepRequestProcessor as follows:

1 try {

2 firstProcessor.processRequest(si);

3 } catch (RequestProcessorException e) {

4 LOG.error("Unable to process request: " + e);

5 }

If the execution passes line 2, it provides positive ev-
idence that the PrepRequestProcessor thread is healthy.
If, instead, the execution reaches line 4, it represents neg-
ative evidence about PrepRequestProcessor. But with
the Panorama hooks inserted at both places, no negative
observations are reported. This is because the implemen-
tation of the processRequest API involves an indirec-
tion: it simply puts a request in a queue and immedi-
ately returns. Asynchronously, the thread polls and pro-
cesses the queue. Because of this design, even though
the OOM exception causes the PrepRequestProcessor

thread to exit its main loop, the ZooKeeperServer thread
is still able to call processRequest and is unable to tell
that PrepRequestProcessor has an issue. The hooks are
only observing the status of the indirection layer, i.e.,
the queue, rather than the PrepRequestProcessor thread.
Thus, negative observations only appear when the re-
quest queue cannot insert new items; but, by default, its
capacity is Integer.MAX_VALUE!

reply

request

C1 C2

request

reply

C1 C2
reply

request

C1 C2

reply

request

C1
C2

(a) (b) (c) (d)

Figure 2: Design patterns of component interactions and their
impact on failure observability. means that failure is ob-
servable to the other component, and means that failure is
unobservable to it.

4.2 Observability Patterns
Although the above case is a unique incident, we extrap-
olate a deeper implication for failure detection: certain
design patterns can undermine failure observability in a
system and thereby pose challenges for failure detection.
To reveal this connection, consider two components C1
and C2 where C1 makes requests of C2. We expect that,
through this interaction, C1 and C2 should be able to
make observations about each other’s status. However,
their style of interaction can have a significant effect on
this observability.

We have identified the following four basic patterns of
interaction (Figure 2), each having a different effect on
this observability. Interestingly, we find examples of all
four patterns in real-world system software.

(a) No indirection. Pattern (a) is the most straightfor-
ward. C1 makes a request to C2, then C2 optionally
replies to C1. This pattern has the best degree of ob-
servability: C1 can observe C2 from errors in its request
path; C2 can also observe C1 to some extent in its re-
ply path. Listing 1 shows an example of this pattern. In
this case, C1 is the follower and C2 is the leader. C1 first
contacts C2, then C2 sends C1 a snapshot or other infor-
mation through an input stream. Failures are observed
via errors or timeouts in the connection, I/O through the
input stream, and/or reply contents.

(b) Request indirection. A level of indirection exists in
the request path: when C1 makes a request to C2, an inter-
mediate layer (e.g., a proxy or a queue) takes the request
and replies to C1. C2 will later take the request from the
intermediate layer, process it, and optionally reply to C1
directly. This design pattern has a performance benefit
for both C1 and C2. It also provides decoupling between
their two threads. But, because of the indirection, C1 no
longer directly interacts with C2 so C2’s observability is
reduced. The immediate observation C1 makes when re-
questing from C2 does not reveal whether C2 is having
problems, since usually the request path succeeds as in
the case in §4.1.

(c) Reply indirection. Pattern (c) is not intuitive. C1
makes a request, which is directly handled by C2, but the
reply goes through a layer of indirection (e.g., a queue or
a proxy). Thus, C1 can observe issues in C2 but C1’s ob-

6

servability to C2 is reduced. One scenario leading to this
pattern is when a component makes requests to multiple
components and needs to collect more than one of their
replies to proceed. In this case, replies are queued so that
they can be processed en masse when a sufficient number
are available. For example, in Cassandra, when a process
sends digest requests to multiple replicas, it must wait for
responses from R replicas. So, whenever it gets a reply
from a replica, it queues the reply for later processing.

(d) Full indirection. In pattern (d), neither component
directly interacts with the other so they get the least ob-
servability. This pattern has a performance benefit since
all operations are asynchronous. But, the code logic can
be complex. ZooKeeper contains an example: When a
follower forwards a request to a leader, the request is pro-
cessed asynchronously, and when the leader later notifies
the follower to commit the request, that notification gets
queued.

4.3 Implications

Pattern (a) has the best failure observability and is eas-
iest for Panorama to leverage. The other three patterns
are more challenging; placing observation hooks with-
out considering the effects of indirection can cause in-
completeness (though not inaccuracy) in failure detec-
tion (§2). That is, a positive observation will not nec-
essarily mean the monitored component is healthy but a
negative observation means the component is unhealthy.
Pragmatically, this would be an acceptable limitation if
the three indirection patterns were uncommon. However,
we checked the cross-thread interaction code in several
distributed systems and found, empirically, that patterns
(a) and (b) are both pervasive. We also found that differ-
ent software has different preferences, e.g., ZooKeeper
uses pattern (a) frequently, but Cassandra uses pattern
(b) more often.

This suggests Panorama should accommodate indirec-
tion in extracting observations. One solution is to instru-
ment hooks in the indirection layer. But, we find that in-
direction layers in practice are implemented with various
data structures and are often used for multiple purposes,
making tracking difficult. We use a simple but robust
solution and describe it in §5.4.

5 Observability Analysis

To systematically identify and extract useful observa-
tions from a component, Panorama provides an offline
tool that statically analyzes a program’s source code,
finds critical points, and injects hooks for reporting ob-
servations.

5.1 Locate Observation Boundary
Runtime errors are useful evidence of failure. Even if
an error is tolerated by a requester, it may still indi-
cate a critical issue in the provider. But, not all errors
should be reported. Panorama only extracts errors gen-
erated when crossing component boundaries, because
these constitute observations from the requester side. We
call such domain-crossing function invocations observa-
tion boundaries.

The first step of observability analysis is to locate
observation boundaries. There are two types of such
boundaries: inter-process and inter-thread. An inter-
process boundary typically manifests as a library API in-
vocation, a socket I/O call, or a remote procedure call
(RPC). Sometimes, it involves calling into custom code
that encapsulates one of those three to provide a higher-
level messaging service. In any case, with some domain
knowledge about the communication mechanisms used,
the analyzer can locate inter-process observation bound-
aries in source code. An inter-thread boundary is a call
crossing two threads within a process. The analyzer iden-
tifies such boundaries by finding custom public methods
in classes that extend the thread class.

5.2 Identify Observer and Observed
At each observation boundary, we must identify the ob-
server and subject. Both identities are specific to the dis-
tributed system being monitored. For thread-level obser-
vation boundaries, the thread identities are statically ana-
lyzable, e.g., the name of the thread or class that provides
the public interfaces. For process-level boundaries, the
observer identity is the process’s own identity in the dis-
tributed system, which is known when the process starts;
it only requires one-time registration with Panorama. We
can also usually identify the subject identity, if the re-
mote invocations use well-known methods, via either an
argument of the function invocation or a field in the class.
A challenge is that sometimes, due to nested polymor-
phism, the subject identity may be located deep down in
the type hierarchy. For example, it is not easy to deter-
mine if OutputStream.write() performs network I/O or
local disk I/O. We address this challenge by changing the
constructors of remote types (e.g., socket get I/O stream)
to return a compatible wrapper that extends the return
type with a subject field and can be differentiated from
other types at runtime by checking if that field is set.

5.3 Extract Observation
Once we have observation boundaries, the next step is to
search near them for observation points: program points
that can supply critical evidence about observed compo-
nents. A typical example of such an observation point is

7

void deserialize(DataTree dt, InputArchive ia)

{

 DataNode node = ia.readRecord("node");

 if (node.parent == null) {

 LOG.error("Missing parent.");

 throw new IOException("Invalid Datatree");

 }

 dt.add(node);

}

void snapshot() {

 ia = BinaryInputArchive.getArchive(

 sock.getInputStream());

 try {

 deserialize(getDataTree(), ia);

 } catch (IOException e) {

 sock.close();

 }

}

Ob-Point

Ob-Point

Ob-Boundary

data flow

control flow

Figure 3: Observation points in direct interaction (§4.2).

an exception handler invoked when an exception occurs
at an observation boundary.

To locate observation points that are exception han-
dlers, a straightforward approach is to first identify the
type of exceptions an observation boundary can generate,
then locate the catch clauses for these types in code re-
gions after the boundary. There are two challenges with
this approach. First, as shown in Figure 3, an exception
could be caught at the caller or caller’s caller. Recur-
sively walking up the call chain to locate the clause is
cumbersome and could be inaccurate. Second, the type
of exception thrown by the boundary could be a generic
exception such as IOException that could be generated
by other non-boundary code in the same try clause.
These two challenges can be addressed by inserting a try

just before the boundary and a catch right after it. This
works but, if the observation boundaries are frequent, the
excessive wrapping can cause non-trivial overhead.

The ideal place to instrument is the shared exception
handler for adjacent invocations. Our solution is to add
a special field in the base Throwable class to indicate the
subject identity and the context, and to ensure boundary-
generated exceptions set this field. Then, when an ex-
ception handler is triggered at runtime, we can check if
this field is set, and if so treat it as an observation point.
We achieve the field setting by wrapping the outermost
function body of each boundary method with a try and
catch, and by rethrowing the exception after the hook.
Note that this preserves the original program semantics.

Another type of observation point we look for is one
where the program handles a response received from
across a boundary. For example, the program may
raise an exception for a missing field or wrong signa-
ture in the returned DataNode in Figure 3, indicating
potential partial failure or corrupt state in the remote
process. To locate these observation points, our ana-
lyzer performs intra-procedural analysis to follow the

data flow of responses from a boundary. If an excep-
tion thrown is control-dependent on the response, we
consider it an observation point, and we insert code to
set the subject/context field before throwing the excep-
tion just as described earlier. This data-flow analysis is
conservative: e.g., the code if (a + b > 100) {throw

Exception("unexpected");}, where a comes from a
boundary but b does not, is not considered an observation
point because the exception could be due to b. In other
words, our analysis may miss some observation points
but will not locate wrong observation points.

So far, we have described negative observation points,
but we also need mechanisms to make positive obser-
vations. Ideally, each successful interaction across a
boundary is an observation point that can report positive
evidence. But, if these boundaries appear frequently, the
positive observation points can be excessive. So, we co-
alesce similar positive observation points that are located
close together.

For each observation point, the analyzer inserts hooks
to discover evidence and report it. At each negative
observation point, we get the subject identity and con-
text from the modified exception instance. We statically
choose the status; if the status is to be some level of
UNHEALTHY then we set this level based on the severity
of the exception handling. For example, if the exception
handler calls System.exit(), we set the status to a high
level of UNHEALTHY. At each positive observation point,
we get the context from the nearby boundary and also
statically choose the status. We immediately report each
observation to the Panorama library, but the library will
typically not report it synchronously. The library will
buffer excessive observations and send them in one ag-
gregate message later.

5.4 Handling Indirection

As we discussed in §4, observability can be reduced
when indirection exists at an observation boundary. For
instance, extracted observations may report the subject
as healthy while it is in fact unhealthy. The core issue is
that indirection splits a single interaction between com-
ponents among multiple observation boundaries. A suc-
cessful result at the first observation boundary may only
indicate partial success of the overall interaction; the in-
teraction may only truly complete later, when, e.g., a
callback is invoked, or a condition variable unblocks, or
a timeout occurs. We must ideally wait for an interaction
to complete before making an observation.

We call the two locations of a split interaction the ob-
origin and ob-sink, reflecting the order they’re encoun-
tered. Observations at the ob-origin represent positive
but temporary and weak evidence. For example, in Fig-
ure 4, the return from sendRR is an ob-origin. Where the

8

public List<Row> fetchRows() {

 ReadCommand command = ...;

 sendRR(command.newMessage(), endPoint, handler);

 ...

 try {

 Row row = handler.get();

 }

 catch (ReadTimeoutException ex) {

 throw ex;

 }

 catch (DigestMismatchException ex) {

 logger.error("Digest mismatch: {}", ex);

 }

}

public void response(MessageIn message) {

 resolver.preprocess(message);

 condition.signal();

}

data flow control flow

Ob-Origin

Ob-Point

Ob-Sink

Ob-Point

Ob-Sink

Figure 4: Observation points when indirection exists (§4.2).

callback of handler, response, is invoked, it is an ob-
sink. In addition, when the program later blocks waiting
for the callback, e.g., handler.get, the successful return
is also an ob-sink. If an ob-origin is properly matched
with an ob-sink, the positive observation becomes com-
plete and strong. Otherwise, an outstanding ob-origin is
only a weak observation and may degrade to a negative
observation, e.g., when handler.get times out.

Tracking an interaction split across multiple program
locations is challenging given the variety of indirection
implementations. To properly place hooks when indirec-
tion exists, the Panorama analyzer needs to know what
methods are asynchronous and the mechanisms for no-
tification. For instance, a commonly used one is Java
FutureTask [40]. For custom methods, this knowledge
comes from specifications of the boundary-crossing in-
terfaces, which only requires moderate annotation. With
this knowledge, the analyzer considers an ob-origin to be
immediately after any call site of an asynchronous inter-
face. We next discuss how to locate ob-sinks.

We surveyed the source code of popular distributed
systems and found the majority of ob-sinks fall into four
patterns: (1) invoking a callback-setting method; (2) per-
forming a blocking wait on a callback method; (3) check-
ing a completion flag; and (4) reaching another obser-
vation boundary with a third component, in cases when
a request must be passed on further. For the first two
patterns, the analyzer considers the ob-sink to be before
and after the method invocation, respectively. For the
third pattern, the analyzer locates the spin-loop body and
considers the ob-sink to be immediately after the loop.
The last pattern resembles SEDA [48]: after A asyn-
chronously sends a request to B, B does not notify A of
the status after it finishes but rather passes on the request
to C. Therefore, for that observation boundary in B, the
analyzer needs to not only insert a hook for C but also

treat it as an ob-sink for the A-to-B interaction.
When our analyzer finds an ob-origin, it inserts a

hook that submits an observation with the special sta-
tus PENDING. This means that the observer currently only
sees weak positive evidence about the subject’s status,
but expects to receive stronger evidence shortly. At any
ob-sink indicating positive evidence, our analyzer inserts
a hook to report a HEALTHY observation. At any ob-sink
indicating negative evidence, the analyzer inserts a hook
to report a negative observation.

To link an ob-sink observation with its corresponding
ob-origin observation, these observations must share the
same subject and context. To ensure this, the analyzer
uses a similar technique as in exception tracking. It adds
a special field containing the subject identity and context
to the callback handler, and inserts code to set this field
at the ob-origin. If the callback is not instrumentable,
e.g., because it is an integer resource handle, then the an-
alyzer inserts a call to the Panorama library to associate
the handle with an identity and context.

Sometimes, the analyzer finds an ob-origin but cannot
find the corresponding ob-sink or cannot extract the sub-
ject identity or context. This can happen due to either
lack of knowledge or the developers having forgotten to
check for completion in the code. In such a case, the an-
alyzer will not instrument the ob-origin, to avoid making
misleading PENDING observations.

We find that ob-origin and ob-sink separation is useful
in detecting not only issues involving indirection but also
liveness issues. To see why, consider what happens when
A invokes a boundary-crossing blocking function of B,
and B gets stuck so the function never returns. When
this happens, even though A witnesses B’s problem, it
does not get a chance to report the issue because it never
reaches the observation point following the blocking call.
Inserting an ob-origin before the function call provides
evidence of the liveness issue: LOSes will see an old
PENDING observation with no subsequent corresponding
ob-sink observation. Thus, besides asynchronous inter-
faces, call sites of synchronous interfaces that may block
for long should also be included in the ob-origin set.

6 Implementation

We implemented the Panorama service in ∼ 6,000 lines
of Go code, and implemented the observability analyzer
(§5) using the Soot analysis framework [46] and the As-
pectJ instrumentation framework [2].

We defined Panorama’s interfaces using protocol
buffers [7]. We then used the gRPC framework [5] to
build the RPC service and to generate clients in different
languages. So, the system can be easily used by various
components written in different languages. Panorama
provides a thin library that wraps the gRPC client for

9

20:10 20:15 20:20 20:25 20:30 20:35
0

20

40

C
o
u
n
t

(a) number of raw observations in a leader

20:10 20:15 20:20 20:25 20:30 20:35

Time

22

25

C
o
u
n
t

(b) number of raw observations in a follower

Figure 5: Number of raw observations in two Panorama ob-
servers. Each data point represents one second.

efficient observation reporting; each process participat-
ing in observation reporting is linked with this library.
The thin library provides features such as asynchronous
reporting, buffering and aggregation of frequent obser-
vations, identity resolution, rate limiting, quick cancella-
tion of PENDING statuses, and mapping of ob-sink handles
(§5.4). So, most operations related to observation report-
ing do not directly trigger local RPC calls to Panorama;
this keeps performance impact low.

7 Evaluation

In this section, we evaluate our Panorama prototype to
answer several key questions: (1) Can observations be
systematically captured? (2) Can observation capturing
detect regular failures? (3) Can Panorama detect produc-
tion gray failures? (4) How do transient failures affect
Panorama? (5) How much overhead does an observer
incur by participating in the Panorama service?

7.1 Experiment Setup
We run our experiments in a cluster of 20 physical nodes.
Each machine has a 2.4 GHz 10-core Intel Xeon E5-
2640v4 CPU, 64 GB of RAM, and a 480 GB SATA SSD;
they all connect to a single 10 Gbps Ethernet switch.
They run Ubuntu 16.04 with Linux kernel version 4.4.0.
We evaluate Panorama with four widely-used distributed
systems: ZooKeeper, Hadoop, HBase, and Cassandra.
HBase uses HDFS for storing data and ZooKeeper for
coordination, so an HBase setup resembles a service with
multiple subsystems. We continuously exercise these
services with various benchmark workloads to represent
an active production environment.

7.2 Integration with Several Systems
Panorama provides a generic observation and failure de-
tection service. To evaluate its generality, we apply it to
ZooKeeper, HDFS, Hadoop, HBase, and Cassandra, at

ZooKeeper Cassandra HDFS HBase

Annotations 24 34 65 16
Analysis Time 4.2 6.8 9.9 7.5

Table 2: Annotations and analysis time (in seconds).

both process and thread level. The integration is success-
ful without significant effort or changes to the system de-
sign. Our simple abstractions and APIs (§3.2) naturally
support various types of failure evidence in each sys-
tem. For instance, we support semantic errors, such as
responses with missing signatures; generic errors, such
as remote I/O exceptions; and liveness issues, such as in-
definite blocking or custom time-outs. The integration is
enabled by the observability analyzer (§5). In applying
the analyzer to a system, we need annotations about what
boundary-crossing methods to start with, what methods
involve indirection, and what patterns it uses (§5.4). The
annotation effort to support this is moderate (Table 2).
HDFS requires the most annotation effort, which took
one author about 1.5 days to understand the HDFS source
code, identify the interfaces and write annotation speci-
fication. Fortunately, most of these boundary-crossing
methods remain stable over releases. When running the
observability analysis, Cassandra is more challenging to
analyze compared to the others since it frequently uses
indirection. On the other hand, its mechanisms are also
well-organized, which makes the analysis systematic.
The observability analysis is mainly intra-procedural and
can finish instrumentation within 10 seconds for each
of the four systems (Table 2). Figure 5 shows the ob-
servations collected from two instrumented processes in
ZooKeeper. The figure also shows that the observations
made change as the observer executes, and depend on the
process’s interaction patterns.

7.3 Detection of Crash Failures

Panorama aims to detect complex failures not limited to
fail-stop. As a sanity check on the effectiveness of its de-
tection capability, we first evaluate how well Panorama
detects fail-stop failures. To measure this, we inject vari-
ous fail-stop faults including process crashes, node shut-
downs, and network disconnections. Table 3 shows the
detection time for ten representative crash-failure cases:
failures injected into the ZooKeeper leader, ZooKeeper
follower, Cassandra data node, Cassandra seed node,
HDFS name node, HDFS data node, HBase master and
HBase regionserver. We see that with Panorama the ob-
servers take less than 10 s to detect all ten cases, and
indeed take less than 10 ms to detect all ZooKeeper
failures. The observers make the observations lead-
ing to these detections when, while interacting with the

10

Detector

Crash Failure Injection Site
ZooKeeper Cassandra HDFS HBase

leader follower seed datanode namenode datanode master regionserver

Built-in 13 ms 3 ms 28 s 26 s 708 ms 30 s (12 min∗) 11 s 102 ms
Panorama 8 ms 2 ms 8 s 9 s 723 ms 6 s 1.5 s 102 ms

Table 3: Crash-failure detection time. *The name node marks the data node stale in 30 s, and dead in 12 min.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f1
0

f1
1

f1
2

f1
3

f1
4

f1
5

Failure Case Id

100

101

102

De
te

ct
io

n
tim

e
(s

ec
)

Panorama Built-In FALCON

Figure 6: Detection time for gray failures in Table 4.

failed components, they experience either request/re-
sponse time-outs or I/O exceptions.

As a basis for comparison, we also measure failure de-
tection time when using the failure detectors built into
these systems. We find that for ZooKeeper, Panorama de-
tects the failures slightly faster than the built-in detector,
while for Cassandra, HDFS datanode and HBase mas-
ter, Panorama achieves much faster detection time. This
is because, to tolerate asynchrony, Cassandra and HDFS
use conservative settings for declaring failures based on
loss of heartbeats. For HDFS namenode, we use a High-
Availability setup that leverages ZooKeeper for failure
detection (when a ZooKeeper ephemeral node expires).
Under this setup, the built-in detector achieves a slightly
faster time than Panorama because the ZooKeeper ser-
vice is co-located with HDFS, whereas Panorama’s de-
tection is from observations made by remote datanodes.

7.4 Detection of Gray Failures
To evaluate Panorama’s ability to detect complex fail-
ures, we reproduce 15 real-world production gray fail-
ures from ZooKeeper, HDFS, HBase, and Cassandra, de-
scribed in Table 4. Each of these caused severe service
disruption, e.g., all write requests would fail. Worse still,
in each case the system was perceived as healthy, so no
recovery actions were taken during the resulting outage.

Panorama is able to detect the gray failure for all 15
cases. Figure 6 shows Panorama’s detection time (in
seconds) for each case. We often find that a failure is
observed and reported by multiple observers; we use the
first failure observation’s timestamp in a final verdict as
the detection time. The detection times have a minimum
of 0.2 s and a maximum of 7 s, with the majority smaller

ID System Fault Synopsis

f1 ZooKeeper faulty disk in leader causes cluster lock-up
f2 ZooKeeper transient network partition leads to pro-

longed failures in serving requests
f3 ZooKeeper corrupted packet in de-serialization
f4 ZooKeeper transaction thread exception
f5 ZooKeeper leader fails to write transaction log

f6 Cassandra response drop blocks repair operations
f7 Cassandra stale data in leads to wrong node states
f8 Cassandra streaming silently fail on unexpected error
f9 Cassandra commitlog executor exit causes GC storm

f10 HDFS thread pool exhaustion in master
f11 HDFS failed pipeline creation prevents recovery
f12 HDFS short circuit reads blocked due to death of

domain socket watcher
f13 HDFS blockpool fails to initialize but continues

f14 HBase dead root drive on region server
f15 HBase replication stalls with empty WAL files

Table 4: Evaluated real-world gray failures. In all cases,
some severe service disruption occured (e.g., all create requests
failed) while the failing component was perceived to be healthy.

than 3 s. The intra-process observers tend to capture fail-
ure evidence faster than the inter-process observers. For
all cases, the failure evidence clearly stands out in the
observations collected about the sick process, so the de-
cision algorithm (§3.6) requires no special tuning.

We compare Panorama with three baselines: the sys-
tem’s built-in failure detector, Falcon [34], and the ϕ ac-
crual detector [29]. As shown in Figure 6, in all but one
case, no baseline detects the gray failure within 300 s.
That one case is f9, where Cassandra’s built-in detector,
a form of the ϕ detector with some application state, re-
ports failure after 86 s when the partial fault of the Cas-
sandra commitlog executor component eventually de-
grades into a complete failure due to uncommitted writes
piling up on the JVM heap and causing the process to
spend most of its time doing garbage collection.

Figure 7 shows a detailed timeline of the detection of
gray failure f1. We see that the observers (in this case the
followers) quickly gather failure evidence while interact-
ing with the unhealthy leader. Also, when the leader’s
fault is gone, those observers quickly gather positive evi-

11

0

10

(a) failure reporting from different detectors

Panorama observer

Built-in detector

FALCON

Accrual detector

0

0

02:36:58
02:37:28

02:37:58
02:38:28

02:38:58
02:39:28

02:39:58
02:40:28

02:40:58

Time

0
Fault occurs Fault clears

0

50

E
rr

o
r

ra
te

(b) status of a client running mixed workloads

timeout success

02:37:12
02:37:42

02:38:12
02:38:42

02:39:12
02:39:42

02:40:12
02:40:42

Time

101

104

L
a
te

n
c
y

(m
s
)

R
a
te

 o
f

fa
il
u
re

 r
e
p
o
rt

s

Figure 7: Timeline in detecting gray failure f1 from Table 4.

dence that clears the failure observation. During the fail-
ure period, no other baseline reports failure. Figure 7
also shows the view from a ZooKeeper client that we
run continuously throughout the experiment as a refer-
ence. We can see Panorama’s reporting closely matches
the experience of this client. Interestingly, since the gray
failure mainly impacts write requests but the client exe-
cutes a mixture of read and write requests, its view is not
very stable; nevertheless, Panorama consistently reports
a verdict of UNHEALTHY during the failure period.

7.5 Fault Localization
In addition to detecting the 15 production fail-
ures quickly, Panorama also pinpoints each failure
with detailed context and observer (§3.2) informa-
tion. This localization capability allows adminis-
trators to interpret the detection results with confi-
dence and take concrete actions. For example, in de-
tecting the crash failure in the ZooKeeper follower,
the verdict for the leader is based on observations
such as |peer@3,peer@5,peer@8| 2018-03-23T02:28:58.873

{Learner: U,RecvWorker: U,QuorumCnxManager: U}, which
identify the observer as well as the contexts Learner,
RecvWorker, and QuorumCnxManager. In detecting
gray failure f1, the negative observations of the
unhealthy leader are associated with three contexts
SerializeUtils, DataTree, and StatPersisted; this lo-
calizes the failure to the serialization thread in leader.

7.6 Transient Failure, Normal Operations
Because Panorama can gather observations from any
component in a system, there is a potential concern that

23:44 23:45 23:46 23:47 23:48 23:49 23:50 23:51 23:52

Time

Healthy

Unhealthy
context1

context2

context3

context4

context5

context6

context7

Figure 8: Verdict during transient failures.

10 20 30 40 50

Cluster size

2000

4000

6000

8000

P
ro

p
a
g
a
ti

o
n

d
e
la

y
 (

u
s
)

unicast multicast

Figure 9: Scalability of observation propagation latency. “uni-
cast”: propagate an observation to a single Panorama in-
stance; “multicast”: propagate an observation to all interested
Panorama instances.

noisy observations will lead to many false alarms. But,
empirically, we find that this does not happen. The
Panorama analyzer assigns the context of an observation
properly to avoid falsely aggregating observations made
in interacting with different functionalities of a complex
process. The simple decision algorithm in §3.6 is robust
enough to prevent a few biased observers or transient
failures from dominating the verdict. Figure 8 shows the
verdict for the ZooKeeper leader in an experiment. A
few followers report transient faults about the leader in
one context, so Panorama decides on a negative verdict.
But, within a few seconds, the verdict changes due to
positive observations and expiration of negative observa-
tions. Panorama then judges the leader as healthy for the
remainder of the experiment, which matches the truth.

We deploy Panorama with ZooKeeper and run for 25
hours, during which multiple ZooKeeper clients contin-
uously run various workloads non-stop to emulate nor-
mal operations in a production environment. In total,
Panorama generates 797,219 verdicts, with all but 705
(0.08%) of them being HEALTHY; this is a low false alarm
rate. In fact, all of the negative observations are made
in the first 22 seconds, during which the system is boot-
strapping and unstable. After the 22 seconds, no negative
observations are reported for the remaining 25 hours.

We also inject minor faults including overloaded com-
ponent, load spike and transient network partition that
are modeled after two production ZooKeeper and HDFS
traces. These minor faults do not affect the regular ser-
vice. We find Panorama overall is resilient to these
noises in reaching a verdict. For example, an overloaded
ZooKeeper follower made a series of misleading obser-

12

(a) ZooKeeper Leader

0
30
60
90

120
150
180

zk_leader_recv zk_leader_sent

0 50 100 150 200 250 300

time

0

5

10

15 pano_recv pano_sent

N
e
t

B
a
n
d
w

id
th

 U
s
a
g
e
 (

K
B

/s
)

(b) ZooKeeper Follower

0
30
60
90

120
150
180 zk_follower_recv zk_follower_sent

0 50 100 150 200 250 300

time

0

5

10

15
pano_recv pano_sent

N
e
t

B
a
n
d
w

id
th

 U
s
a
g
e
 (

K
B

/s
)

(c) HBase Master

0
10
20
30
40
50
60
70 hbase_master_recv hbase_master_sent

50 100 150 200 250 300

time

0.0

0.5

1.0

1.5

2.0
pano_recv pano_sent

N
e
t

B
a
n
d
w

id
th

 U
s
a
g
e
 (

K
B

/s
)

(d) HBase RegionServer

0
40
80

120
160
200
240 hbase_rs_recv hbase_rs_sent

50 100 150 200 250 300

time

0.0

0.5

1.0

1.5

2.0

2.5
pano_recv pano_sent

N
e
t

B
a
n
d
w

id
th

 U
s
a
g
e
 (

K
B

/s
)

Figure 10: Network bandwidth usage of the Panorama instance and its monitored component.

Report ReportAsync Judge Propagate
114.6 µs 0.36 µs 109.0 µs 776.3 µs

Table 5: Average latency of major operations in Panorama.

vations that the leader is UNHEALTHY. But these biased ob-
servations from a single observer did not result in a ver-
dict of UNHEALTHY status for the leader. When there were
many such overloaded followers, however, the leader
was falsely convicted as UNHEALTHY even though the ac-
tual issues were within the observers.

7.7 Performance
Table 5 shows microbenchmark results: how long four
major operations in Panorama take on average. Report-
ing an observation to Panorama only requires a local
RPC, so the average latency of reporting is fast (around
100 µs). And, the asynchronous API for reporting takes
even less time: on average less than 1 µs. Propagation
of an observation to another Panorama instance takes
around 800 µs. Figure 9 shows how the propagation la-
tency changes as the cluster size increases.

When a Panorama instance is active, the CPU utiliza-
tion attributable to it is on average 0.7%. For each mon-
itored subject, the number of observations kept in LOS
is bounded so the memory usage is close to a constant.
Thus, the total memory usage depends on the number of
monitored subjects. When we measure the ZooKeeper
deployment with Panorama, and find that the heap mem-
ory allocation stabilizes at ∼7 MB for a moderately ac-
tive instance, and at ∼46 MB for a highly active instance.
The network bandwidth usage of Panorama instance for

System
Latency Throughput

Read Write Read Write

ZK 69.5 µs 1435 µs 14402 op/s 697 op/s
ZK+ 70.6 µs 1475 µs 14181 op/s 678 op/s

C∗ 677 µs 680 µs 812 op/s 810 op/s
C∗+ 695 µs 689 µs 802 op/s 804 op/s

HDFS 51.0 s 61.0 s 423 MB/s 88 MB/s
HDFS+ 52.5 s 62.2 s 415 MB/s 86 MB/s

HBase 746 µs 1682 µs 1172 op/s 549 op/s
HBase+ 748 µs 1699 µs 1167 op/s 542 op/s

Table 6: Performance of the original system versus the perfor-
mance of the system instrumented with Panorama hooks (Sys-
tem+). ZK stands for ZooKeeper and C∗ stands for Cassandra.
The latency results for HDFS are total execution times.

exchanging observations is small compared to the band-
width usage of the monitored components (Figure 10).

We test the end-to-end request latency and through-
put impact of integrating with Panorama for HDFS,
ZooKeeper, HBase, and Cassandra, using YCSB [16],
DFSIO and a custom benchmark tool. Table 6 shows the
results. The latency increase and throughout decrease for
each system is below 3%. We achieve this low overhead
because the reporting API is fast and because most hooks
are in error-handling code, which is not triggered in nor-
mal operation. The positive-observation hooks lie in the
normal execution path, but their cost is reduced by coa-
lescing the hooks with the analyzer (§5.3) and batching
the reporting with the thin client library. Without this op-
timization, the performance overhead can be up to 18%.

13

8 Discussion and Limitations

Panorama proposes a new way of building failure de-
tection service by constructing in-situ observers. The
evaluation results demonstrate the effectiveness of lever-
aging observability for detecting complex production
failures. The process of integrating Panorama with
real-world distributed systems also makes us realize
how the diverse programming paradigms affect sys-
tems observability. For example, HDFS has a method
createBlockOutputStream that takes a list of data nodes
as argument and creates a pipeline among them; if this
method fails, it indicates one of the data nodes in the pi-
pleline is problematic. From observability point of view,
if a negative evidence is observed through this method,
it is associated with multiple possible subjects. Fortu-
nately, an errorIndex variable is maintained internally
to indicate which data node causes the error, which can
be used to determine the exact subject. It is valuable to
investigate how to modularize a system and design its in-
terfaces to make it easier to capture failure observability.

There are several limitations of Panorama that we plan
to address in future work. First, Panorama currently fo-
cuses on failure detection. To improve end-to-end avail-
ability, we plan to integrate the detection results with fail-
ure recovery actions. Second, Panorama currently does
not track causality. Enhancing observations with causal-
ity information will be useful for correctly detecting and
pinpointing failing components in large-scale cascading
failures. Third, we plan to add support for languages
other than Java to the Panorama analyzer, and evaluate
it with a broader set of distributed systems.

9 Related Work

Failure Detection. There is an extensive body of work
on studying and improving failure detection for dis-
tributed systems [8, 13, 14, 20, 29, 47]. A recent promi-
nent work in this space is Falcon [34], in which the au-
thors argue that a perfect failure detector (PFD) can be
built [9] by replacing end-to-end timeouts with layers of
spies that can kill slow processes. Panorama is compli-
mentary to these efforts, which mainly focus on detect-
ing crash failures. Panorama’s goal is to detect complex
production failures [11, 25, 30]. In terms of approach,
Panorama is unique in enhancing system observability
by constructing in-situ observers in place of any com-
ponent’s code, instead of using dedicated detectors such
as spies or sensors that are outside components’ normal
execution paths.

Monitoring and Tracing. Improving monitoring and
tracing of production systems is also an active research
area. Examples include Magpie [12], X-Trace [21],

Dapper [45] and Pivot Tracing [35]. The pervasive
metrics collected by these systems enhance system ob-
servability, and their powerful tracing capabilities may
help Panorama better deal with the indirection chal-
lenge (§4). But they are massive and difficult to reason
about [15, 37, 44]. Panorama, in contrast, leverages er-
rors and exceptions generated from an observer’s normal
execution to report complex but serious failures.

Accountability. Accountability is useful for detect-
ing Byzantine component behavior in a distributed sys-
tem [28, 51]. PeerReview [27] provides accountabil-
ity by having other nodes collecting evidence about the
correctness of a node through their message exchanges.
Panorama’s approach is inspired by PeerReview in that
it also leverages evidence about other components in a
system. But Panorama mainly targets production gray
failures instead of Byzantine faults. Unlike PeerReview,
Panorama places observability hooks in the existing code
of a component and does not require a reference imple-
mentation or a special protocol.

10 Conclusion

We present Panorama, a system for detecting produc-
tion failures in distributed systems. The key insight en-
abling Panorama is that system observability can be en-
hanced by automatically turning each component into
an observer of the other components with which it in-
teracts. By leveraging these first-hand observations, a
simple detection algorithm can achieve high detection
accuracy. In building Panorama, we further discover
observability patterns and address the challenge of re-
duced observability due to indirection. We implement
Panorama and evaluate it, showing that it introduces min-
imal overhead to existing systems. Panorama can detect
and localize 15 real-world gray failures in less than 7 s,
whereas existing detectors only detect one of them in un-
der 300 s. The source code of Panorama system is avail-
able at https://github.com/ryanphuang/panorama.

Acknowledgments

We thank the OSDI reviewers and our shepherd, Ding
Yuan, for their valuable comments that improved the
paper. We appreciate the support from CloudLab [43]
for providing a great research experiment platform. We
also thank Yezhuo Zhu for sharing ZooKeeper produc-
tion traces and Jinfeng Yang for sharing HDFS produc-
tion traces. This work was supported in part by a Mi-
crosoft Azure Research Award.

14

https://github.com/ryanphuang/panorama

References
[1] Asana service outage on September 8th, 2016.

https://blog.asana.com/2016/09/yesterdays-outage/.

[2] AspectJ, aspect-oriented extension to the Java programming lan-
guage. https://www.eclipse.org/aspectj.

[3] GoCardless service outage on October 10th, 2017.
https://gocardless.com/blog/incident-review-api-and-dashboard-
outage-on-10th-october.

[4] Google Compute Engine incident 16007.
https://status.cloud.google.com/incident/compute/16007.

[5] gRPC, a high performance, open-source universal RPC frame-
work. https://grpc.io.

[6] Microsoft Azure status history. https://azure.microsoft.com/en-
us/status/history.

[7] Protocol buffers. https://developers.google.com/

protocol-buffers/.

[8] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and
consensus in the crash-recovery model. Distributed Computing,
13(2):99–125, Apr. 2000.

[9] M. K. Aguilera and M. Walfish. No time for asynchrony. In Pro-
ceedings of the 12th Conference on Hot Topics in Operating Sys-
tems, HotOS’09, Monte Verità, Switzerland, May 2009. USENIX
Association.

[10] Amazon. AWS service outage on October 22nd, 2012. https:

//aws.amazon.com/message/680342.

[11] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-stutter
fault tolerance. In Proceedings of the Eighth Workshop on Hot
Topics in Operating Systems, HotOS ’01. IEEE Computer Soci-
ety, 2001.

[12] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie
for request extraction and workload modelling. In Proceedings of
the 6th Conference on Symposium on Opearting Systems Design
& Implementation - Volume 6, OSDI ’04, San Francisco, CA,
2004. USENIX Association.

[13] T. D. Chandra and S. Toueg. Unreliable failure detectors for re-
liable distributed systems. Journal of the ACM, 43(2):225–267,
Mar. 1996.

[14] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of
service of failure detectors. IEEE Transactions on Computing,
51(5):561–580, May 2002.

[15] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch. The
Mystery Machine: End-to-end performance analysis of large-
scale Internet services. In Proceedings of the 11th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI
’14, pages 217–231, Broomfield, CO, 2014. USENIX Associa-
tion.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In Pro-
ceedings of the 1st ACM Symposium on Cloud Computing, SoCC
’10, pages 143–154, Indianapolis, Indiana, USA, 2010. ACM.

[17] J. Dean. Designs, lessons and advice from building large dis-
tributed systems, 2009. Keynote at The 3rd ACM SIGOPS Inter-
national Workshop on Large Scale Distributed Systems and Mid-
dleware (LADIS).

[18] J. Dean and L. A. Barroso. The tail at scale. Communications of
the ACM, 56(2):74–80, Feb. 2013.

[19] T. Do, M. Hao, T. Leesatapornwongsa, T. Patana-anake, and H. S.
Gunawi. Limplock: Understanding the impact of limpware on
scale-out cloud systems. In Proceedings of the 4th Annual Sym-
posium on Cloud Computing, SOCC ’13, Santa Clara, California,
2013. ACM.

[20] C. Fetzer. Perfect failure detection in timed asynchronous sys-
tems. IEEE Transactions on Computing, 52(2):99–112, Feb.
2003.

[21] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-
Trace: A pervasive network tracing framework. In Proceedings
of the 4th USENIX Conference on Networked Systems Design &
Implementation, NSDI ’07, Cambridge, MA, 2007. USENIX As-
sociation.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP ’03, pages 29–43, Bolton
Landing, NY, USA, 2003. ACM.

[23] E. Gilman. PagerDuty production ZooKeeper service incident in
2014. https://www.pagerduty.com/blog/the-discovery-of-apache-
zookeepers-poison-packet/.

[24] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency. In Proceedings
of the Twelfth ACM Symposium on Operating Systems Principles,
SOSP ’89, pages 202–210. ACM, 1989.

[25] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundarara-
man, X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey,
G. Grider, P. M. Fields, K. Harms, R. B. Ross, A. Jacobson,
R. Ricci, K. Webb, P. Alvaro, H. B. Runesha, M. Hao, and H. Li.
Fail-slow at scale: Evidence of hardware performance faults in
large production systems. In Proceedings of the 16th USENIX
Conference on File and Storage Technologies, FAST ’18, pages
1–14, Oakland, CA, USA, 2018. USENIX Association.

[26] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien. Pingmesh:
A large-scale system for data center network latency measure-
ment and analysis. In Proceedings of the 2015 ACM SIGCOMM
Conference, SIGCOMM ’15, pages 139–152, London, United
Kingdom, 2015. ACM.

[27] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Prac-
tical accountability for distributed systems. In Proceedings of
the Twenty-first ACM SIGOPS Symposium on Operating Systems
Principles, SOSP ’07, pages 175–188, Stevenson, Washington,
USA, 2007. ACM.

[28] A. Haeberlen and P. Kuznetsov. The fault detection problem.
In Proceedings of the 13th International Conference on Princi-
ples of Distributed Systems, OPODIS ’09, pages 99–114, Nîmes,
France, 2009. Springer-Verlag.

[29] N. Hayashibara, X. Defago, R. Yared, and T. Katayama. The ϕ

accrual failure detector. In Proceedings of the 23rd IEEE Inter-
national Symposium on Reliable Distributed Systems, SRDS ’04,
pages 66–78. IEEE Computer Society, 2004.

[30] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalap-
ati, and R. Yao. Gray failure: The Achilles’ heel of cloud-scale
systems. In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems, HotOS ’17, pages 150–155, Whistler, BC,
Canada, 2017. ACM.

15

https://www.eclipse.org/aspectj
https://grpc.io
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://aws.amazon.com/message/680342
https://aws.amazon.com/message/680342

[31] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
Wait-free coordination for Internet-scale systems. In Proceed-
ings of the 2010 USENIX Conference on USENIX Annual Techni-
cal Conference, USENIX ATC ’10, Boston, MA, 2010. USENIX
Association.

[32] R. E. Kalman. On the general theory of control systems. IRE
Transactions on Automatic Control, 4(3):110–110, December
1959.

[33] J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish. Im-
proving availability in distributed systems with failure informers.
In Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation, NSDI ’13, pages 427–442,
Lombard, IL, 2013. USENIX Association.

[34] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Wal-
fish. Detecting failures in distributed systems with the Falcon spy
network. In Proceedings of the Twenty-third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 279–294, Cas-
cais, Portugal, 2011. ACM.

[35] J. Mace, R. Roelke, and R. Fonseca. Pivot tracing: Dynamic
causal monitoring for distributed systems. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15,
pages 378–393, Monterey, California, 2015. ACM.

[36] Microsoft. Office 365 service incident on November
13th, 2013. https://blogs.office.com/2012/11/13/

update-on-recent-customer-issues/.

[37] J. C. Mogul, R. Isaacs, and B. Welch. Thinking about availabil-
ity in large service infrastructures. In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems, HotOS ’17, pages
12–17, Whistler, BC, Canada, 2017. ACM.

[38] D. Nadolny. Network issues can cause cluster to hang due to near-
deadlock. https://issues.apache.org/jira/browse/ZOOKEEPER-
2201.

[39] D. Nadolny. Debugging distributed systems. In SREcon 2016,
Santa Clara, CA, Apr. 2016.

[40] Oracle. Java Future and FutureTask. https://docs.oracle.com/
javase/7/docs/api/java/util/concurrent/Future.html.

[41] D. L. Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1053–1058,
Dec. 1972.

[42] J. Postel. DoD Standard Transmission Control Protocol, January
1980. RFC 761.

[43] R. Ricci, E. Eide, and the CloudLab Team. Introducing Cloud-
Lab: Scientific infrastructure for advancing cloud architectures
and applications. USENIX ;login:, 39(6), December 2014.

[44] T. Schlossnagle. Monitoring in a DevOps world. Communica-
tions of the ACM, 61(3):58–61, Feb. 2018.

[45] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a
large-scale distributed systems tracing infrastructure. Technical
report, Google, Inc., 2010.

[46] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan. Soot - a Java bytecode optimization framework. In
Proceedings of the 1999 Conference of the Centre for Advanced
Studies on Collaborative Research, CASCON ’99, Mississauga,
Ontario, Canada, 1999. IBM Press.

[47] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure
detection service. In Proceedings of the IFIP International Con-
ference on Distributed Systems Platforms and Open Distributed
Processing, Middleware ’98, pages 55–70, The Lake District,
United Kingdom, 1998. Springer-Verlag.

[48] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
well-conditioned, scalable Internet services. In Proceedings of
the Eighteenth ACM Symposium on Operating Systems Princi-
ples, SOSP ’01, pages 230–243, Banff, Alberta, Canada, 2001.
ACM.

[49] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang,
P. U. Jain, and M. Stumm. Simple testing can prevent most crit-
ical failures: An analysis of production failures in distributed
data-intensive systems. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’14, pages 249–265, Broomfield, CO, 2014. USENIX As-
sociation.

[50] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou,
and S. Savage. Be conservative: Enhancing failure diagnosis with
proactive logging. In Proceedings of the 10th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI
’12, pages 293–306, Hollywood, CA, USA, 2012. USENIX As-
sociation.

[51] A. R. Yumerefendi and J. S. Chase. The role of accountability
in dependable distributed systems. In Proceedings of the First
Conference on Hot Topics in System Dependability, HotDep ’05,
Yokohama, Japan, 2005. USENIX Association.

16

https://blogs.office.com/2012/11/13/update-on-recent-customer-issues/
https://blogs.office.com/2012/11/13/update-on-recent-customer-issues/
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

	Introduction
	Problem Statement
	Panorama System
	Overview
	Abstractions and APIs
	Local Observation Store
	Observers
	Observation Exchange
	Judging Failure from Observations

	Design Pattern and Observability
	A Failed Case
	Observability Patterns
	Implications

	Observability Analysis
	Locate Observation Boundary
	Identify Observer and Observed
	Extract Observation
	Handling Indirection

	Implementation
	Evaluation
	Experiment Setup
	Integration with Several Systems
	Detection of Crash Failures
	Detection of Gray Failures
	Fault Localization
	Transient Failure, Normal Operations
	Performance

	Discussion and Limitations
	Related Work
	Conclusion

