
Efficient Exposure of Partial Failure Bugs in
Distributed Systems with Inferred Abstract States

Haoze Wu† Jia Pan† Peng Huang‡

Johns Hopkins University† University of Michigan‡

Abstract
Many distributed system failures, especially the notorious
partial service failures, are caused by bugs that are only
triggered by subtle faults at rare timing. Existing testing is
inefficient in exposing such bugs. This paper presents Legolas,
a fault injection testing framework designed to address this gap.
To precisely simulate subtle faults, Legolas statically analyzes
the system code and instruments hooks within a system. To
efficiently explore numerous faults, Legolas introduces a novel
notion of abstract states and automatically infers abstract states
from code. During testing, Legolas designs an algorithm that
leverages the inferred abstract states to make careful fault
injection decisions. We applied Legolas on the latest releases
of six popular, extensively tested distributed systems. Legolas
found 20 new bugs that result in partial service failures.

1 Introduction

Deployed distributed systems frequently encounter faults in
the underlying hardware and dependent software. While these
systems are generally fault-tolerant, an unexpected fault can
still expose bugs. Indeed, real-world distributed system outages
are often triggered by some fault events [6, 14, 16, 34].

Fault injection testing,also known as chaos engineering [48],
has gained popularity to find fault-induced bugs early. Various
solutions are developed to inject common faults such as
crashes [3,15,40],disk faults [13,26],and network partitions [2,
3,27]. Despite the progress, many complex fault-induced bugs
remain hidden in existing testing and cause failures after
deployment. These bugs share several characteristics.

First, they cause puzzling symptoms where the services
seem to work but are partially broken, which are notorious in
production distributed systems [10, 12, 22, 23, 36]. Figure 1
shows a real failure from a ZooKeeper deployment. The clients
experienced timeouts in create requests, but get requests still
succeeded. Pinging the leader also showed that it was alive.
As another example, users reported [5, 9, 25] that their Kafka
cluster occasionally experienced partial breakdown, and one
broker could not return to an in-sync status.

Second, these bugs are triggered under subtle faulty con-
ditions, such as a network error that only affects some oper-
ations but not others [1, 36], transient slowness [17, 21], or
microburst [28]. In the aforementioned ZooKeeper example,

Leader Follower

Request

Processors

Leaner

Handler

Snap

shot
…

Follower

NewExisting

Client

create

set

get

void serialize(OutputArchive oa) {

 synchronized (node) {

 ...

 oa.writeRecord(node, "node");

 }

}
// stuck due to a network issue

Figure 1: A real ZooKeeper production incident [46] triggered by a
partial network fault, which caused the writeRecord operation to be
stuck while holding a lock.

(0, 1] (1, 2] (2, 3] (3, 4] (4, 5] (5, 6]

Elapsed Time (second)

101

102

103

#
 o

f
o
p
s
 t

o
 i
n
je

c
t

Figure 2: Hundreds to thousands of operations per second are
candidates for injecting IOException during ZooKeeper’s execution.

the buggy code works properly in normal conditions. The
failure was only exposed by a partial network fault between a
leader and a new follower, and the fault only affects a specific
operation (writeRecord). The faults can also originate from
software and be system-specific, such as a custom exception
from an RPC to a remote component (e.g., when the database
is overloaded). The Kafka failure example was caused by a
custom exception returned from an RPC to the dependent
ZooKeeper service. Simulating these fault conditions in testing
requires precise control of the fault types and locations.

Third, these bugs require careful choices of when and where
the fault occurs. Distributed systems have a large number of
fault points (Figure 2), but since these systems are robust, most
faults would be tolerated or result in an expected failure (e.g.,
abort on error in reading a file). To expose the ZooKeeper
failure, a transient network latency increase must be injected
while a new follower is requesting a snapshot from the leader.
Injecting the fault at other times or other locations is ineffective.
A random injection choice,which is commonly used in existing
solutions, will have a high chance of missing the buggy point.

We present Legolas, a fault injection framework designed
to efficiently expose the above class of complex fault-induced
bugs in large distributed systems. Unlike the practice of

injecting system-agnostic faults externally in the environment
or libraries, Legolas uses program analysis to perform fine-
grained and system-specific fault injection. It analyzes the fault
conditions for each instruction in the code and instruments
hooks to precisely simulate subtle faults within the system.

With more faults to consider, the problem of a large fault
injection space becomes more pronounced.

Our insight is that production bugs occur in unusual
conditions—otherwise, existing testing likely has exposed
it. Thus, we can selectively inject faults by checking if the
system reaches an unusual condition. Unfortunately, we do
not know beforehand whether a program point is unusual or
not. Using ad-hoc heuristics, such as only injecting faults
when the program is inside a critical section, can miss many
failure-inducing conditions. We should still systematically
explore the injection choices for generality and completeness.

Based on this insight, Legolas introduces a novel notion of
abstract state to guide systematic but efficient exploration of
the fault injection space. The basic idea is to use system states
to group injection points. A system’s state can be represented
by its variables and concrete values. This representation,
however, is massive for large systems, and it would make
almost all injection points appear in unique groups. For fault
injection, we need a more high-level state representation, in
which multiple injections likely yield similar effect.

Legolas uses a simple yet novel static analysis that auto-
matically infers abstract states from the target system code.
The automation is feasible because developers usually leave
clear hints in the code about abstract states: the system checks
one or more state variables’ concrete values in a branch to see
if an important condition occurs; if so, it performs some sig-
nificantly different action. An abstract state thus can indicate
that a system enters a unique stage of service, e.g., request
parsing, snapshotting, and leader election.

Specifically, Legolas first infers concrete state variables
in a system. It then identifies code blocks that are control-
dependent on some concrete state variable. It finally creates a
mnemonic abstract state variable for each such block, which
will be set when the program execution reaches that point.

Leveraging the inferred abstract states, Legolas can effi-
ciently explore the injection space. During testing, the in-
jection hooks Legolas instruments dispatch queries to the
Legolas controller. The controller checks the system’s current
abstract states and decides whether to grant an injection or
not. Essentially, Legolas enables stateful fault injection.

We design a stateful injection decision algorithm called
budgeted-state-round-robin (bsrr). Other stateful policies are
also feasible, and it is easy to add and switch policies in
Legolas. Compared to the straightforward new-state-only
policy, bsrr is robust to tolerate potential inaccuracies in the
abstract state analysis. It also reduces biases in injections.

We have built an end-to-end prototype for the Legolas
framework, including the static analyzer, fault injection con-
troller, workload driver, and failure checkers.

We apply Legolas to six large distributed systems: Kafka,
ZooKeeper, HDFS, HBase, Cassandra, and Flink. Legolas
automatically instruments these systems and extracts abstract
states without special tuning. We run fault injection exper-
iments on these systems’ recent releases. Using the bsrr
algorithm, Legolas finds 20 new bugs with a median time
of 58 minutes. These bugs all cause partial service failure
symptoms. We report the bugs to developers. Four reports are
marked as critical, fourteen reports are marked as major, and
two are marked as normal. Eleven reports have been explicitly
confirmed by developers so far. We also compare Legolas
(bsrr) with state-of-the-art solutions and other policies. The
best performing baseline is the new-state-only policy with
Legolas, which exposes eight bugs. The random injection
policy only exposes three bugs in a median of 362 minutes.

In summary, this paper makes the following contributions:
• We propose an approach that uses program analysis to

enable customized and fine-grained fault injection.
• We introduce a novel concept of abstract state and a method

that automatically infers abstract states from a given system’s
code. We design a new decision algorithm that leverages
the inferred abstracts to guide efficient fault injections for
exposing complex bugs that cause partial service failures.

• We build a fault injection framework Legolas and evaluate
Legolas on large distributed systems.

2 Overview of Legolas

Legolas is an end-to-end fault injection testing framework
for large distributed systems. It aims to efficiently expose
fault-induced bugs like the motivating examples.
Scope. Consider a distributed system S that consists of mul-
tiple processes 𝑃 and provides a range of services 𝑅. One
definition of a partial failure is that a subset of 𝑃 are faulty
(crash, Byzantine, or gray faults [23]), which may be tolerated
and not affect the functionalities of S.

Legolas focuses on exposing partial failures with respect
to services, where some 𝑅 𝑓 ⊂ 𝑅 fail to maintain their safety
or liveness properties, while other services 𝑅 \ 𝑅 𝑓 behave
as expected. In contrast, in a total failure, all services in 𝑅

break. An intuitive strategy to uncover partial failures is thus
to perturb each service based on their specifications, but this
strategy can be difficult to apply with large concrete codebases.

Owing to the modular designs prevalent in large distributed
systems, each service is typically implemented by a specific
component made up of threads; each process 𝜋 encompasses
disjoint sets of components that provide different services for
S . For example, a leader process in ZooKeeper has dedicated
request handlers, snapshot manager, quorum messenger, etc.
If one thread fails, the recovery mechanisms will try to avoid
interruptions to the corresponding service. Thus, Legolas is
designed to perturb each component (some thread) within
𝜋—instead of crashing 𝜋 outright—by inducing faults to the
instructions executed by the component. This allows for a
deeper exploration of the potential partial failures in S.

source
code

Legolas
analyzer{ } { }

Legolas
agent libabstract state

extraction

fault point
identification

1

2

instrumented
system

static analysis phase dynamic testing phase
system cluster

node1
node2

node3

Legolas server

Abstract state
tracker

Injection
controller

Failure checkers

4 budgeted state round
robin (bsrr) algorithm

5

injection
query

inform
state

clients 3

agent

Workload driver

Figure 3: Fault injection workflow with Legolas.

+

InjectionQuery query = new InjectionQuery(serverId,
 threadId, ..., invokedMethodSig, faultIds);
InjectionCommand command = stub.inject(query);
if (command.id == -1) return; // no injection
/* simulate the decided fault */
...

LegolasAgent.inject("org.apache.zookeeper.server.DataTree",
 "serializeNode", 1115,"<org.apache.jute.OutputArchive:
 void writeRecord(...)>", 268, 0, 3);
outputArchive.writeRecord(node, "node");

Figure 4: Injection hook instrumented for code in Figure 1.

Workflow. Figure 3 shows the workflow with Legolas. It takes
a system’s code as an input,uses static analysis to identify faulty
conditions unique to the system, and instruments injection
hooks directly within the system (1) to simulate subtle faults.

In addition, Legolas runs a novel analysis that automatically
extracts abstract states from the system code (2). It identifies
code locations that may represent an important change in the
system’s service status, and inserts mnemonic abstract state
variables at these locations. Legolas then links a thin agent
library with the target system.

During testing, Legolas starts a cluster of the instrumented
system and runs the workload driver (3). When a node reaches
an injection hook, the embedded agent dispatches an RPC
query to the Legolas controller, which decides whether to
grant the injection or not. If the agent receives a positive reply,
it will simulate the fault inside the node directly.

Importantly, the Legolas server tracks abstract states for
eachnode. When a node enters a new abstract state, the Legolas
agent informs the state tracker in the server. The controller
leverages the abstract state to make injection decisions. In
particular, we design an algorithm called budgeted state round-
robin (bsrr) (4). To determine the injection outcome, Legolas
runs the failure checkers (5).

3 Identify and Instrument Injection Points

A widely-used fault injection approach is to introduce node-
level faults such as process crashes and network disconnections
externally in the environment. This approach is suitable for
exposing distributed protocol bugs or crash-recovery bugs.
However, partial failures are often triggered by subtle faults
in the implementations. Existing solutions that inject fine-
grained faults focus on the boundaries between an application
and libraries or services, and take an interception approach.
For example, LFI [43] intercepts libc API such as recv and
returns error codes to applications. Although their injection is
more fine-grained (library APIs or service requests) than node-
level faults, they miss internal errors in a system. Moreover, it
is difficult for them to precisely simulate partial faults because
they do not directly control the program execution.

To address these issues, Legolas goes deeper—to the pro-
gram statements inside a system—and takes an instrumen-
tation approach. It uses static program analysis to deduce

potential faulty conditions for each statement and add injec-
tion control points to directly simulate faults in situ.
Identify Faulty Conditions. The Legolas analyzer locates
each call instruction in the system and examines its invoca-
tion target to extract potential fault conditions. A straight-
forward way is to leverage the method signature. However,
two challenges arise. First, a method may internally throw
an exception that is not declared in the signature. Some lan-
guages also do not enforce or support exception specification
in method signature. Second, due to polymorphism and inter-
face, a call site of a method may be impossible to encounter
an exception declared in the method signature. This is es-
pecially problematic with I/O related exceptions. Consider
dump(OutputStream out) throws IOException, which is declared
this way because the argument out is an abstract class with
IOException in its methods’ signatures. However, if a call
site of dump passes a ByteArrayOutputStream as an argument,
injecting an IOException causes an invalid scenario.

To handle the first issue, Legolas inspects the method body
and deduces the exceptions. However, it cannot simply collect
the exceptions in the throw instructions. This is because
the method may have an exception handler that catches the
exception. Legolas analyzes the error handlers in the function
to determine if an exception may be (i) caught and handled;
(ii) caught and re-thrown; (iii) uncaught. Only (ii) and (iii) are
treated as the true method-level exceptions.

To address the issue of invalid injection, Legolas designs
an inter-procedural, context-sensitive analysis to check call
instructions with potential IOException. It deduces whether
the objects (argument, return, field, class) associated with a call
site may come from definition points with known in-memory
object types, and ignores the fault if so.

Besides exceptions, the fault condition could also be a delay.
All operations could in theory experience some delay. In
practice, mild delays are benign and developers need evidence
to explain the delay. Legolas by default only considers function
calls that involve I/O as delay injection candidates.
Instrument Injection Hooks. For each program point with
potential faulty conditions, Legolas instruments an injection
hook. Legolas also emits a thin agent to link with the target
system. At runtime, when an injection hook is reached, the
agent creates a query to a controller (Figure 4), which includes
the interposed operation, possible fault ids, node id, name and

id of the current thread. If the injection is granted, the agent
looks up the fault id, which can be either a delay or some
exception. For delay, the agent simply invokes the thread sleep
function. We focus on worst-case situations and use 1 minute
as the default delay (the writeRecord call in Figure 1 can
hang for over 15 minutes under default Linux TCP settings).
For exception, the agent constructs an exception instance and
throws it before the injection hook returns.

Automatically creating an exception instance to throw is
a non-trivial task. Some custom exception type includes
complex arguments and compositions. Legolas analyzes the
constructor and recursively reduces complex arguments to
primitive types. It then creates an exception instance by
assigning the primitive fields with default values.

Where to add the injection hooks also requires careful
considerations. The straightforward way is to instrument each
call instruction that Legolas analyzes to possibly encounter a
fault. Suppose foo() is analyzed to possibly throw MyError,
but that is only because foo() internally calls bar(), which can
throw that error. If MyError is injected at the call sites of foo(),
we need further explanation of why this exception occurs. For
deep call chains, such injections make the exception reasoning
difficult and may turn out to be invalid.

To address this issue, Legolas instruments as deep as possi-
ble. It identifies faults that originate from a method through
explicit throw statement. It then only instruments calls to
either a method that has a non-empty list of such faults, or an
external function. If the called method is from an interface
or abstract class, Legolas injects at the caller’s call sites to
handle potential invalid injections.
Benefits. Legolas’s approach eases fault simulation without
requiring a special environment (e.g., a FUSE-based file sys-
tem [13,49]). It also gives precise control to simulate partial
faults, e.g., a partial disk failure that only affects a subset of
file operations; only some RPCs within certain code region
are delayed. It also supports simulating custom errors. While
a custom error may be caused by some environment fault, it
can be difficult to simulate them with external injection. For
example, a method may throw an exception only when all
three retries of a connection fail.

4 Abstract State Guided Fault Injection
A key challenge in fault injection for distributed systems is
the enormous injection choices (Figure 2). Moreover, only
few choices can expose bugs. This is because production dis-
tributed systems have extensive fault resilience mechanisms.
Insight. Our insight is that many fault injection attempts
are unnecessary because they are testing the same or similar
scenarios. Take a ZooKeeper code snippet in Figure 5 as an ex-
ample. The SyncRequestProcessor component is responsible
for synchronizing the requests to log files on disks. Suppose
we are injecting faults on I/O operations. There are numerous
injection points here, including operations inside the called

public class SyncRequestProcessor extends Thread {
 public void run() {
 int logCount = 0;
 while (true) {
 Request si = queuedRequests.take();
 if (zks.getDB().append(si)) {
 logCount++;
 if (logCount > snapCount) {
 if (snapThd != null && snapThd.isAlive()) {
 LOG.warn("Too busy to snap, skipping");
 } else {
 (snapThd = new Thread(() -> {
 zks.takeSnapshot();
 })).start();
 }
 logCount = 0;
 }
 }
 ...
 }
 }
}

S0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

S1

S2

S3

Figure 5: The grayedareas are code regions containing I/O operations.
The bug in Figure 1 occurs inside a call chain from line 13.

o1 o2 o3 o4 o7

t

o5 o8 o9 …o10

buggy point

futile point

o6

A

B

C D

on

system state

Figure 6: Group the injection points by the state they appear in.

functions. Line 6, which syncs requests to logs, gets executed
at each loop iteration, while line 13 only occurs occasionally.
With limited testing resources, we may only inject faults on
operations inside line because of their frequent occurrences.
Idea. Inspecting the system state for each component can help
us make better decisions. For the previous example, we could
realize that the system enters a rare state (snapshotting) when it
reaches line 13. Operations in this state couldbe ofhigh interest.
Our basic idea is thus to group the injection points based on the
underlying system state (Figure 6). Grouping helps avoid being
indiscriminate when making injection decisions. The injection
points that lie in the same group of state are hypothesized to
yield similar outcomes if injected, while the injection points
in different groups may yield different outcomes.

However, we do not just focus on rare states, as defining
them is subjective. Moreover, the presence of an injection
point in a rare state does not imply a bug. Neither does an
injection point in a common state guarantee the absence of
bugs. For example, a bug may be exposed with a fault occurring
inside the append call in Figure 5—which is in a common
state—when it is executed for the fourth time.

We thus explore the injection space systematically. That is,
if there were four chances, we try to explore injections in all
four states, instead of spending them only in one state.

4.1 State Representation Choices
The next question is how to define the system state for effective
grouping? Unlike distributed protocols that have specifica-
tions, determining the state representation for complex system
implementation is not easy. The complete execution states—
the program counter, stack traces, and memory snapshot—are

S
0

S
2

S
3

S
1

Figure 7: State machine with abstract states for Figure 5. Each state
is an abstraction over the concrete state variable logCount.

obviously too excessive. A more reasonable representation is
to use some key state variables (SV). A value change of these
variables then could indicate the system is in a different state.
This representation, however, can still be excessive.

Take Figure 5 as an example. If we treat the logCount as
a state variable (SV), the value is incremented for 𝑛 times,
and each increment is counted as a new state. Using such a
representation not only requires frequent state tracking, but
also degrades the injection point grouping to be useless.

The key reason is that some values in a concrete state
variable do not imply a significant change, at least for fault
injection purposes. All the increment-by-one value transitions
of logCountwhile n<=snapCount indicate the same information
about the system, while only the transition of n>snapCount

indicates something new (starting to snapshot).
Essentially we need a more high-level representation than

concrete state variables (SV), which we define as abstract
state variable (ASV). The intuition behind ASVs is that
they represent different stages of service in a system. For the
example in Figure 5, a natural way to define the abstract state
is to divide the execution into four stages— 𝑆0 to 𝑆3 . Figure 7
shows the corresponding abstract state machine. This simpler
representation can recognize when the system starts to do
snapshot (state 𝑆2). In turn, they can effectively group the
injection points to make fault injection efficient.

4.2 Infer Abstract State Variables
The Legolas analyzer uses a simple yet novel method to
automatically infer ASVs in a system. The feasibility of the au-
tomation is based on our insight that developers usually already
encode sufficient hints about ASVs. In particular, developers
checks one or more state variables (SV) in a branch, and if
certain condition occurs, the system performs some action, i.e.,
if (func(state_var1, var2, ...)) { do_action1(); } . From

our inspection, in long-lived components, it is a common
practice to utilize SV to designate different functionalities at
different iterations. For example, the QuorumPeer component in
ZooKeeper uses a static variable state to indicate the node sta-
tus, which could be LEADING, FOLLOWING, etc. The QuorumPeer

component then has a while loop that does a switch case on
this SV to select different functionalities over time.

Legolas first locates all the task-unit classes in the system.
These classes are generally threads or workers, such as classes
that extend Thread or Runnable in Java. The analyzer then runs
ASV inference on each task-unit class.

Algorithm 1 lists the core algorithm. It starts by inferring the
SVs in the code (Line 2). InferCSV simply treats all non-static,
non-constant fields defined in a task unit to be SVs.

Legolas then analyzes the main task method of the task
unit class, such as the run() method of a Thread. It finds the

Algorithm 1: Infer abstract state variables
1 Function InferASV(task_class):
2 𝑐𝑠𝑣_𝑙𝑖𝑠𝑡 ← InferCSV(𝑡𝑎𝑠𝑘_𝑐𝑙𝑎𝑠𝑠);
3 𝑡𝑎𝑠𝑘_𝑚𝑒𝑡ℎ𝑜𝑑← getTaskMethod(𝑡𝑎𝑠𝑘_𝑐𝑙𝑎𝑠𝑠);
4 𝑑𝑒𝑝_𝑔𝑟𝑎𝑝ℎ← buildDependence(𝑡𝑎𝑠𝑘_𝑚𝑒𝑡ℎ𝑜𝑑, 𝑐𝑠𝑣_𝑙𝑖𝑠𝑡);
5 𝑎𝑠𝑣_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠← [𝑡𝑎𝑠𝑘_𝑚𝑒𝑡ℎ𝑜𝑑.body().getFirst()];
6 Process(task_method.body(), dep_graph, false);
7 Function Process(𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠, 𝑑𝑒𝑝_𝑔𝑟𝑎𝑝ℎ, 𝑓 𝑙𝑎𝑔):
8 𝑖𝑛𝑠𝑡 ← 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠.begin();
9 ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑜𝑛← false;

10 while 𝑖𝑛𝑠𝑡 ≠ 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠.end() do
11 if isBranch(𝑖𝑛𝑠𝑡) then
12 <𝑐𝑜𝑛𝑑, 𝑏𝑙𝑜𝑐𝑘𝑠, 𝑛𝑒𝑥𝑡>← parseBranch(𝑖𝑛𝑠𝑡);
13 if dep_graph.contains(cond) then
14 for block← blocks do
15 Process(block.body(), dep_graph, true);
16 end
17 end
18 𝑖𝑛𝑠𝑡 ← 𝑛𝑒𝑥𝑡;
19 else
20 ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑜𝑛← ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑜𝑛 | isAction(𝑖𝑛𝑠𝑡);
21 𝑖𝑛𝑠𝑡 ← 𝑖𝑛𝑠𝑡.next();
22 end
23 end
24 if ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑜𝑛 and 𝑓 𝑙𝑎𝑔 then
25 𝑎𝑠𝑣_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠.add(𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠.begin());

basic blocks in the task method that are control dependent on
some SV and treats each such basic block as a new ASV.

Specifically, the analyzer iterates through instructions in the
task method. Upon a branch instruction, it checks if the branch
condition is dependent on some SV (Line 13). This check
considers not only direct usage of SV but also indirect data
dependence, i.e., a branch condition involving a local variable
that gets its value from an SV. Accordingly, the analyzer builds
a data dependence graph of the SVs (Line 4). The algorithm
then recursively processes the basic blocks control dependent
on this branch instruction (Line 15). A system should perform
non-trivial actions in an abstract state. Thus, we check if the
basic block contains at least one function invocation or an
operation that could change a state variable (Line 20).

Once the proper basic blocks are located, the analyzer
assigns indexes for them, 𝑎𝑠𝑣0, . . ., 𝑎𝑠𝑣𝑛. The indexes are
local to the task class. For each inferred ASV, the analyzer
instruments a call to the Legolas agent. At runtime, the agent
notifies the Legolas state tracker of the 𝑎𝑠𝑣𝑖 that is entered,
along with the node id, the name and id of the current task.

Note that our ASV is not equivalent to conventional control-
flow path. We make program paths collapse into more mean-
ingful ones (service stages) that guide fault injection.

Example. Figure 8 shows the ASVs Legolas infers and
inserts for the code in Figure 5. The inferred ASV is slightly
different from 𝑆2 in the simplified snippet in Figure 7. This
is because the logCount is a local variable, thus the Legolas
analyzer does not treat it as an SV. Another variable snapThd is

asv0

asv1

asv2

asv3

LegolasAgent.inform(identityHashCode, ..., 0);
while (true) {
 Request si = queuedRequests.take();
 if (request == requestOfDeath) break;
 LegolasAgent.inform(identityHashCode, ..., 1);
 if (zks.getDB().append(si)) {
 logCount++;
 if (logCount > snapCount) {
 if (snapThd != null && snapThd.isAlive()) {
 LegolasAgent.inform(identityHashCode, ..., 2);
 LOG.warn("Too busy to snap, skipping");
 } else {
 LegolasAgent.inform(identityHashCode, ..., 3);
 (snapThd = new Thread(...
 }
 logCount = 0;
...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Figure 8: The ASVs Legolas infers for Figure 5.

o1 o2 o3 o7

t

o8 o9 o10

buggy point

futile point

A B

system state

o11

inject

…

Figure 9: The buggy point may not be the first request in a state.

a non-static field of SynchRequestProcessor. Legolas treats it
as an SV and infers the 𝑎𝑠𝑣3 that represents the snapshot stage.
This result is in fact more accurate than using logCount, be-
cause it infers an additional state (𝑎𝑠𝑣2)—a previous snapshot
is ongoing while the snapshot threshold is reached.

Alternative. We also explored other ASV inference meth-
ods. For example, we observe that although some function only
uses local variables, it can still represent an important system
service stage, e.g., handling an event. Defining an ASV at the
function entry can be useful. We chose our above inference
method for its simplicity. As Section 7 later show, it is general
enough to apply on all the popular distributed systems we
evaluate and achieve significant performance. It is also feasible
to extend Algorithm 1 and analyze the functions called in
the task method to extract more thorough stages. However,
only analyzing the main task method already provides a good
generalization to capture key stages in a component that match
the system modularity and design documentations.

4.3 Injection Decision Algorithm
With the inferred abstract states, Legolas enables stateful
decision policies for efficient fault injection. When the con-
troller receives an injection request from the Legolas agent,
the controller checks which abstract state the target system is
in at the time of the injection request to make a decision.

A straightforward stateful policy is to grant an injection
request only if the system is in a new state, which we call a new-
state-only policy. While this policy matches the intuition that
complex bugs are often only triggered when the system enters
an unusual condition, it has several drawbacks. As Figure 9
shows, there can be multiple injection requests from one state,
and a buggy point may not be the first request. Indeed, for the
ZooKeeper example, even though the bug only appears in the
snapshot state, the snapshot function performs several write
operations before it reaches the buggy point. This policy also

Algorithm 2: Budgeted state round robin (bsrr) policy
Global Vars: Queue<State> rrl, Map<State,Info> visit
/* invoked at start of a fault injection trial */

1 Function setupNewTrial():
2 resetIfAllUsed(𝑟𝑟𝑙, 𝑣𝑖𝑠𝑖𝑡);
3 while !𝑟𝑟𝑙.empty() do
4 𝑠← 𝑟𝑟𝑙.pop();
5 info← 𝑣𝑖𝑠𝑡.get(𝑠);
6 if info = nil or info.budget > 0 then
7 𝑟𝑟𝑙.append(s);
8 break;
9 end

10 end
11 while !𝑟𝑟𝑙.empty() and 𝑣𝑖𝑠𝑖𝑡.get(𝑟𝑟𝑙.front()).budget = 0 do
12 𝑟𝑟𝑙.pop();
13 end
14 updateProbabilities(𝑣𝑖𝑠𝑖𝑡);

/* invoked for each injection request */

15 Function shouldInject(request):
16 𝑐𝑢𝑟𝑟 ← getCurrentState(𝑟𝑒𝑞𝑢𝑒𝑠𝑡);
17 if not visit.contains(𝑐𝑢𝑟𝑟) then
18 𝑣𝑖𝑠𝑖𝑡.put(𝑐𝑢𝑟𝑟 , new Info());
19 𝑟𝑟𝑙.append(𝑐𝑢𝑟𝑟);
20 end
21 info← 𝑣𝑖𝑠𝑖𝑡.get(𝑐𝑢𝑟𝑟);
22 info.occur← info.occur + 1;
23 if rrl.front() ≠ curr then return false;
24 if info.budget > 0 and rand() < info.prob then
25 info.budget← info.budget - 1;
26 return true;
27 end
28 return false;

relies on the abstract state analysis to be precise. If the static
analysis misses instrumenting an ASV close to the buggy
point, the buggy point will likely be treated as in a seen state.
In addition, the system can take a long time to enter a new
state. If we only wait for new states, we may not inject anything
when the workload finishes and waste an experiment trial.

To address these drawbacks, we design a budgeted-state-
round-robin (bsrr) policy. Algorithm 2 lists its algorithm.

The algorithm allocates a budget (default 5) for each state to
be potentially granted injection more than once. This relaxes
the stringent new state requirement. After all states use up
their budgets, the budgets are reset (Line 2).

It keeps a round-robin list of the abstract state tuples (rrl in
Algorithm 2). Suppose the list has 𝑠1, 𝑠2, . . . , 𝑠𝑛. The algorithm
intends to grant injection requests from state 𝑠1 for the first
trial, grant requests from 𝑠2 for the second trial, and so on. In
other words, it focuses on one state in one trial.

Specifically, before each trial, bsrr rotates the state focused
in the last trial to the end of the round-robin list (Line 7). If a
state’s budget is used up, it is removed from the list.

The round-robin design addresses the imbalanced injections
problem illustrated by Figure 10: in all three experiment trials,

t

buggy point

system state
inject

A

B

C

trial 1 trial 2 trial 3

futile point

Figure 10: All injection chances are given to operations in state A.

we would inject operations in the frequent state A (within its
budget), while no operation in state B or C is injected.

The algorithm also applies randomization to allow exploring
different choices when a state has multiple injection requests.
The probability 𝑝 should be set properly. If it is too large, we
would always grant the first (few) requests in a state. If it is
too small, we may waste the injection trial.

We calculate 𝑝 for each state tuple based on 𝑐—the
times this state appears in injection requests. We set 𝑝 =

1− 𝑒𝑙𝑛(0.01)/(𝑐+1) . This formula’s rationale is that we want to
(i) grant at least one injection among the 𝑐 requests to avoid
wasting the trial; (ii) let the injection occur neither too early
nor too late among the 𝑐 requests. The probability that all
𝑐 injections are not granted is (1− 𝑝)𝑐. Because of (i), this
probability should be close to 0. Suppose (1− 𝑝)𝑐 = 𝜖 . With
(ii), 𝜖 should not be too small; otherwise 𝑝 is too close to 1
and the injection would be too early. We set 𝜖 to 0.01, and
solve this equation, which gives 𝑝 = 1− 𝑒𝑙𝑛(0.01)/𝑐. We use
1− 𝑒𝑙𝑛(0.01)/(𝑐+1) instead to handle corner cases of 𝑐 = 2 or 3.

The bsrr policy is adaptive to leverage information from
prior trials. Upon each injection request, the algorithm dynam-
ically updates the parameter 𝑐 (Line 22). Before a trial starts,
it uses the occurrences from previous trials to re-calculate the
probabilities for the visited states (Line 14). Similarly, bsrr
updates the round-robin list dynamically (initially empty). If
a state in an injection request is not visited before, it is added
to the round-robin list for later exploration (Line 19).

5 Testing Experiment
Legolas starts fault injection testing after the analyzer finishes
instrumentations (§3, § 4.2) on the target system. Legolas uses
a client-server architecture to manage the testing (Figure 3),
where the Legolas agents embedded in the system send RPC
requests to a Legolas server that is composed of an abstract
state tracker, injection controller, workload driver, and failure
checkers. The testing proceeds in continuous trials.

5.1 Injection Trial
In each trial, Legolas starts a cluster of the target system and
then invokes the workload driver (Section 5.2). The trial ends
when the workload finishes (successfully or not).

To support stateful injection decision algorithm (Sec-
tion 4.3), while the target system is restarted in each trial,
the Legolas server will live throughout the experiment. Thus,
it carries information such as the round-robin list across trials.

When a node enters a new abstract state, the Legolas agent
notifies the state tracker, which maintains one Abstract State
Machine (ASM) per task-unit (usually a thread) for each system
node. Each state update event is a tuple of node id, ASM-name

(class name), ASM-instance (class instance), and ASV. The
tracker records the current ASV and transitions for each ASM.

When a node reaches an injection hook, the Legolas agent
sends an injection query to the controller, which is a tuple of
node id, ASM-instance, operation, and fault ids. The controller
runs the bsrr algorithm to decide whether to grant the injection
or not. Notice, however, that the injection query does not carry
the ASV information. The controller obtains the associated
ASV by indexing the node id and ASM-instance from the
injection query to the ASM map in the state tracker.

Legolas by default grants at most one injection in one trial.
Allowing multiple injections in a trial only requires a simple
change. While it seems more attractive to keep injecting faults
in a trial, that choice has several disadvantages. Although
distributed systems are designed to be fault-tolerant, each
system has a limited tolerance level. If we keep injecting in a
single run, the system may likely break as expected. Moreover,
each injected fault can alter the system state and leave side
effects. With continuously injected faults, it becomes very
difficult to judge the system behavior and tell which fault is
responsible for the symptom. Also importantly, if injections
are performed non-stop, we may go deeper in an execution
path, but we will not inject earlier, skipped operations or
explore other paths, sacrificing completeness.

5.2 Workload Driver
Legolas uses a workload driver to exercise the target system.
For each system, we select several existing, representative test
cases to create the workload driver.

To better suit our objectives, we make a few adaptations to
the test cases. First, the driver creates multiple clients and each
client is typically dedicated to interacting with one node. In
this way, Legolas can observe the status of every system node
without mixing signals. Second, the driver divides workloads
into phases, e.g., create, read and write. Only when the current
workload phase finishes successfully will the next phase starts.
This is to localize the failed system functionalities and avoid
unnecessary errors that mislead the results. Third, in one
workload phase, each client is expected to send a series of
requests and will report its progress to Legolas server after
one request completes. The Legolas server also tracks when a
client timeouts or encounters exceptions. This allows Legolas
to more accurately assess the failure impact. Lastly, we use a
small workload scale, such that a trial does not take long and
Legolas can explore more trials.

5.3 Failure Checkers
To determine the testing results, Legolas currently provides
three failure checkers:
• Crash checker: it monitors the OS signals to check if a

system node crashes, aborts, or exits with a non-zero status.
• Client checker: it approximates Panorama [22], a state-of-

the-art gray failure detector, to identify whether differential
observability exists. In particular, it marks a trial suspicious

System Release SLOC Type

ZooKeeper 3.6.2 95K Coordination service
HDFS 3.2.2 689K Distributed file system
Kafka 2.8.0 322K Event streaming system
HBase 2.4.2 728K Distributed database
Cassandra 3.11.10 210K Distributed database
Flink 1.14.0 78K Stateful streaming system

Table 1: Evaluated distributed systems in latest releases.

if (1) a fault is injected in one node, but only another node’s
clients report errors; (2) the system’s own detector indicates
a node is active, but the node’s clients report errors; (3) only
a subset of clients fail to complete their workloads.

• Log checker: it scans the logs of each system node to identify
whether there are log entries at warning or error level.
As a testing framework, Legolas is extensible to add more

checkers. For example, users can add checkers about inconsis-
tency [38], semantic failures [37], or transaction isolation [30].

When a fault is injected, Legolas records the stack trace
of the originating operation. With the stack traces, Legolas
further clusters the trials by stack trace similarities so that
similar symptoms are investigated together.

6 Implementation
We implement Legolas with around 7,500 SLOC for the core
components, and 100–300 SLOC for the workload driver for
each evaluated target system. The Legolas static analyzer is
built on top of the Soot [52] framework, so it supports systems
in JVM bytecode, including Java and Scala. Its core analysis
algorithms are based on universal programming language
constructs such as thread classes, member variables, branches,
and conditionals. Thus, they are language-independent. The
controller and orchestrator are designed in a client-server
architecture using Java RMI for local RPCs.

7 Evaluation
Our evaluation aims to answer several key questions: (1)
does Legolas work on large distributed systems? (2) can
Legolas expose new complex fault-triggered bugs? (3) does
the abstract states Legolas infers significantly help the fault
injection efficacy? (4) how does Legolas using the bsrr policy
compare to other policies and state-of-the-art solutions?
Evaluated Systems. We evaluate Legolas on the recent stable
releases of six popular, large-scale distributed systems (Ta-
ble 7). These systems have different functionalities, written
with various programming paradigms. Our appendix lists the
workloads we use in the testing.
Measure. For a testing tool, its ability to exposes new bugs is
a key measure. Our evaluation thus centers around this aspect
(Section 7.2). Since our target systems are widely deployed in
production and have been extensively tested for years, finding
new bugs in their latest releases is not an easy task.

Additionally, we apply Legolas on a number of randomly
sampled known bugs in old releases of the systems (Sec-
tion 7.5), including the running example in Figure 1.

System Class ASM ASV Static. Injected

Total Mean Min Max Methods Points

ZK 708 36 226 6 1 31 484 1947
HDFS 4636 104 390 4 1 16 2127 3913
Kafka 5829 51 220 4 1 15 343 754
HBase 10462 96 312 3 1 17 5874 11051
CSD 4636 104 390 4 1 18 2127 3913
Flink 4852 48 110 2 1 6 997 2299

Table 2: Statistics of applying Legolas static analyzer. Class: ana-
lyzed Java classes; ASM: classes analyzed as abstract state machines;
Mean, min, and max of ASV are abstract state variables in each ASM.

Setup. We run experiments on servers with a 20-core 2.20GHz
CPU and 64 GB memory running Ubuntu 18.04.

Each system’s fault injection experiment consists of 2000
trials. A trial’s time is dominated by the system startup and
workload execution. The trials’ durations vary depending on
how the system reacts to the injected faults and whether it fails
early or not. The experiment time for the six systems is 2.7 hrs,
10.7 hrs, 23.5 hrs, 8.4 hrs, 54.6 hrs, and 26.5 hrs respectively.

We use the bsrr policy (Section 4.3), and set the state budget
to the default value of 5 for all systems.

Due to the large scale of experiments and time constraints,
our testing focuses on the following faults: (1) I/O related
exceptions, e.g., IOException, ClosedChannelException; (2)
custom exception types that inherit from IOException; (3)
delays to function calls that involve disk or network I/O.
We run two separate experiments (exception and delay) for
each system. We observe that IOException is widely used to
represent more than hardware issues. For example, developers
add throw new IOException statements for situations such as
“unreasonable length”, “missing signature”, “current epoch
is less than accepted epoch”, and “snapshot already exists”,
which are difficult to simulate by external fault injection tools.

7.1 Injection Points and Abstract States
Legolas successfully applies on the six systems. Besides
scaffolding information (e.g., class paths, task class types), the
analyzer does not require additional input for a new system.
The injection policies are also not specially tuned.

As Table 2 shows, the number of task classes (ASMs) Lego-
las extracts is much smaller compared to the number of classes
in the system. It also varies across different systems due to
their design choices. For example, ZooKeeper has a relatively
small number, while Cassandra has over 100; yet, ZooKeeper
has the largest ASVs per ASM. This is because ZooKeeper
uses long-running threads, while Cassandra adopts an event-
driven architecture that uses many short-lived runnables. The
mean ASVs per ASM is moderate, because currently Legolas
only analyzes the direct ASM classes and task entry methods.

We further manually inspect the 36 ASMs and 226 ASVs
Legolas generates for ZooKeeper. We find that they can repre-
sent the state transitions in ZooKeeper at different granularities.
For example, in the QuorumPeer ASM, the ASVs exactly match
the states of a node in the quorum: for the states such as

Looking, Observing, Leading, and Following, there exists ex-
actly one ASV for each. In the SyncRequestProcessor ASM,
the ASVs capture local state transitions: there is one ASV
in which the transaction log is written, one when flushing
in-memory log, and one when the snapshot is taken.

Dynamically, 24 ASMs and 76 ASVs are traversed during
our testing. For the 150 non-traversed ASVs, 46 are from the
12 unutilized ASMs. We check the rest 104 ASVs to see if
they encode meaningful execution states. In 20 of them, the
code blocks have at least one I/O operation. In another 58
ASVs, they are in the exception handlers or shutdown blocks.
In 8 ASVs, they only print a log. The remaining 18 ASVs do
not contain significant operations and are introduced due to
code optimizations by Soot. For the 20 unvisited ASVs that
contain I/O operations, we tried to enlarge our workload (more
reads/writes, reconfiguration), which did not help. However,
our small workload achieves decent utilization of the ASVs.

7.2 Finding New Bugs
Our overall experience in the fault injection experiments is that
the evaluated systems are robust to tolerate or at least cleanly
abort various faults in most places. Take ZooKeeper as an
example. If a thread is doing a socket write and a network delay
is injected, this thread will get stuck. In general, ZooKeeper
can handle the fault correctly even though this thread hangs.
For example, if the LearnerHandler thread hangs in this way,
the QuorumPeer is able to confirm the stale PING state and
abandon the problematic QuorumPeer.

Despite the robustness, Legolas finds new bugs in all tested
systems. It finds 20 unique bugs (Table 8 in Appendix). All
bugs are non-trivial and require domain knowledge to un-
derstand, such as mishandling of errors, design flaws, and
synchronization issues. They all trigger partial failure symp-
toms, such as some requests get stuck while others succeed.

We reported the bugs to developers. Four reports are marked
as critical, fourteen as major, and two as normal. Eleven reports
have been explicitly confirmed by developers so far. Our bug
reports generate substantial discussions with developers, with
a median of 21 comments and a maximum of 42 comments.
Our reports to ZooKeeper inspired the developers to adopt
fault injection testing practice.
Case Studies. HDFS-15925 In one trial, Legolas injects an
IOException in the BlockReceivermodule while one datanode
is forwarding the data blocks to a mirror (another datanode).
One client gets stuck without any error log, and its work-
load progress is partial (1/5), while other clients finish the
workload (5/5). After investigation, we find that normally
the datanode in such a situation will inform the client of
this error state immediately. Then the client will resend the
blocks. This process would be fast. Through code analysis,
we find the root cause is a complex timing bug. In particular,
when the datanode encounters the IOException it sets the
mirrorError flag (Figure 11). However, a concurrency condi-
tion exists in which the mirrorError flag set could be shortly

class PacketResponder {
 public void run() {
 while (isRunning() && !lastPacketInBlock) {
 PipelineAck ack = new PipelineAck();
 try {
 if (type != LAST_IN_PL && !mirrorError) {
 ack.readFields(downstreamIn);
 }
 } catch (IOException ioe) {
 ...
 }
 }
 }
}

class BlockReceiver {
 private int receivePacket() {
 if (mirrorOut != null && !mirrorError) {
 try {
 ...
 packetReceiver.mirrorPacketTo(mirrorOut);
 ...
 } catch (IOException e) {
 handleMirrorOutError(e);
 }
 }
 return lastPacketInBlock?-1:len;
 }
}

IOException injected inside

set flag mirrorError

gets stuck

Figure 11: A timing bug that causes the packet responder to get
blocked when the datanode encounters an IOException.

0 250 500 750 1000 1250 1500

Experiment time (minutes)

0
2
4
6
8

10
12
14
16
18
20

#
 o

f
b
u
g
s
 e

x
p
o
s
e
d bsrr

random

new state only

exhaustive

Figure 12: Efficacy of decision policies in Legolas on detecting new
bugs. bsrr: our budgeted-state-round-robin algorithm.

after the PacketResponder thread checks this flag, causing
PacketResponder to not notice this status and get blocked, and
the ACK packet will not be sent by the mirror datanode.

Legolas exposes the bug five times in the experiment, with
the first time in trial 124 at around 43 minutes.

HDFS-15869 The HDFS namenode uses the EditLog to
maintain a transaction log of the namespace modifications.
In one trial, Legolas injects a delay to a remote write in
the FSEditLogAsync thread. The injection occurs when the
thread sends a response to the client and other servers, after it
commits a transaction. This causes the whole FSEditLogAsync

to be unable to proceed. The critical logSync function cannot
be executed for incoming transactions. This is undesirable
because FSEditLogAsync’s key feature is asynchronous edit
logging that is supposed to tolerate slow I/O.

7.3 Impact of Abstract States and BSRR
This paper’s thesis is that our inferred abstract states can enable
efficient fault injection. Section 7.2 shows that Legolas finds
complex new bugs with our bsrr algorithm. To further validate
our thesis, we compare the bsrr algorithm with alternative
decision policies on the 20 new bugs.

Detected Bugs Median Detection Time

FATE 1 1057.9 minutes
CrashTuner 4 20.4 minutes
CORDS 0 N/A

Table 3: Effectiveness of existing work on the 20 new bugs.

For each policy, we run a 2000-trial experiment and measure
the number of bugs it exposes, as well as the time it takes to
expose the bugs. The latter is an important metric. If a solution
cannot expose a bug within a reasonable time, developers in
practice likely will not use it even if the solution in theory
may expose the bug after a long time.

Figure 12 shows the result. The exhaustive policy only
exposes one bug. The random policy only exposes three bugs.
It is also inefficient. It takes a median of 208 minutes and a
max of 994 minutes to find the three bugs. After finding the
third bug, it fails to find more bugs in 24 hours.

The new-state-only policy (§ 4.3) exposes eight bugs in
a median of 11.4 minutes. It is the best among the baseline
policies, showing the advantages of our inferred abstract states.

The bsrr significantly outperforms all alternatives. It ex-
poses 20 bugs in a median of 58.2 minutes (min 4.0 minutes,
max 302.0 minutes). Compared to new-state-only, it is more
robust in leveraging the imperfectly inferred abstract states,
exposing much more bugs while achieving good efficiency.

The inferred ASVs help improve the fault injection efficacy
in two ways. First, they can capture the unusual system service
stages, allowing Legolas to inject in places that are not well
tested and buggy. For example, in HDFS-15957, one of the
ASVs Legolas infers for FSEditLogAsync represents the state
of sending a response to client while FSEditLogAsync is com-
mitting transactions. The ASVs for the running ZooKeeper
example also belong to this category. Second, the inferred
ASVs can help make progress in skipping uninteresting in-
jection points. For example, in HDFS-15925, the injection
(Figure 11) occurs inside the DataXceiver thread in the datan-
ode. The relevant ASV that Legolas infers corresponds to the
processOp stage. Although this ASV is just the main stage of
the thread, the other ASVs Legolas infers in other threads
help avoid wasting too much time in injecting in other places.

7.4 Comparing with Other Solutions
Research Baselines. We compare Legolas with three state-
of-the-art fault injection research projects, FATE [15] Crash-
Tuner [40] and CORDS [13]. FATE tests multiple failures by
using a concept of failure IDs to efficiently enumerate the
combinations of failures. CrashTuner uses meta-info variable
accesses to decide the timing of injecting node crashes for
exposing crash recovery bugs. CORDS uses a FUSE file sys-
tem to inject a single corruption or read/write error to one
file-system block at a time, and enumerate all possible faults.

The first two works focus on node-level faults, making them
not directly comparable to Legolas. We apply their key ideas
to attempt meaningful comparisons. We define the failure
IDs as described in the FATE paper and implement a policy

in Legolas to grant an injection request when its associated
failure ID has not been visited. For CrashTuner, because its
analyzer component is not available, we re-implement its static
analysis to identify all meta-info variable accesses and assign
each access point a global ID. We instrument each access
point to record the accesses at runtime. Then we grant an
injection request when some meta-info variable access occurs
within the past 5 ms and the access ID has not been seen. The
latter is needed because a system may access the meta-info
variable in a deterministic order, leading to only one injection
being always granted if the access ID is not checked.

For CORDS, we utilize similar procedures as described in
the paper to enumerate file system level errors on the requests
to FUSE. For the experiment, we use the same workloads as
in Legolas but use the injection algorithm in CORDS.

Table 3 shows the result. FATE only detects one of the
20 new bugs in 1057.9 minutes. CrashTuner only detects
four bugs. Legolas significantly outperforms both solutions.
CORDS does not detect any of the 20 new bugs despite
enumerating all of its injection choices during the experiment.
Although CORDS is a fine-grained fault injection tool, its
fault scope is limited. It only injects corruption or error of
a file block. Only 2 of the 20 bugs’ root causes are related
with that. For the two cases, they require a transient error and
special timing, while CORDS injects persistent corruption or
error that more likely leads to a total failure (node crash).
Popular Tool Baselines. We further compare Legolas with
three fault injection tools that are popular among developers:
CharybdeFS [49] (a fault-injection filesystem), tcconfig [19]
(a network fault injection tool based on Linux Traffic Control),
and byte-monkey [53]. Byte-monkey is closer to Legolas in
that it also performs bytecode-level fault injection.

These tools rely on user-provided parameters to configure
the injection, such as the packet loss rate and probability of
returning an error code. Settings that are too large or too small
produce meaningless results. We choose one moderate setting
and one mild setting for each tool. We exercise the target
systems using the same workloads from Legolas.

Most injections lead to either a high percentage of successful
trials or a high percentage of early exits (shown in appendix).
For the small percentage of partial_progress injection trials,
the failed client requests either happen directly because of the
injected fault (e.g., the server logs that it is unable to read data
from client) or the system is in the middle of fault handling
and successfully recovers. We verify that none of these trials
expose any of the 20 new bugs Legolas finds. We also vary
the parameters, but the conclusions remain the same.

In the Legolas decision policy comparison experiments
(§ 7.3), its random policy exposes three bugs. In comparison,
the evaluated popular tools do not expose any bugs with their
random strategies. The discrepancies are due to the probability
factor and the fact that Legolas’s in-situ injection mechanism
has more precise control—it instruments operations that are
possible to throw IOException (or its subtype) errors, which

System Bug Id (Exposure Time)

ZooKeeper ZK-2029 (15.4 min), ZK-2201 (30.6 min), ZK-2247
(52.1 min), ZK-2325 (2.6 min), ZK-2982 (18.5 min)

Cassandra CA-6364 (10.0 min), CA-6415 (330.6 min), CA-8485
(25.3 min), CA-13833 (86.7 min)

HDFS HDFS-11608 (29.2 min), HDFS-12157 (39.9 min)

Table 4: Legolas exposes known bugs in old releases.

ZooKeeper HDFS Kafka Cassandra HBase Flink

8.9 s 31.6 s 36.9 s 20.9 s 77.6 s 63.9 s

Table 5: Time of static analysis and instrumentation.

may be caused by complex environment errors. For instance,
while tcconfig injects packet loss, it fails to trigger errors for
function calls that internally throw IOException only upon
a sequence of network errors. Also, its injection has a low
chance of affecting only a special subset of operations.

7.5 Exposing Known Bugs
Besides finding new bugs, we further evaluate Legolas’s
capabilities on exposing known partial failure bugs. We sample
11 real-world partial-failure issues from older system releases.
In particular, we first use keywords matching on Jira to collect
all cases whose root cause is related to I/O exception or delay.
Then we randomly sample 50 of them, and select all the cases
that satisfy our definition of partial failures and require one
fault, which result in 11 cases. As Table 4 shows, Legolas can
relatively quickly reproduce these known bugs.

7.6 Performance
We measure the fault injection trial duration for Legolas.
Figure 13 shows the results. Although Legolas tracks abstract
states and dispatches the fault injection queries through RPCs,
the injection duration is still acceptable, with a maximum
of around 70 seconds. Legolas uses local RPCs based on
Java RMIs. Our microbenchmark shows the RMI latency
is between 10 𝜇s–50 𝜇s. The bsrr policy function for one
injection request has a median latency of 3 ms.

Table 5 shows the performance of the Legolas static analysis
and instrumentation. The analysis is fast, with the longest time
being (73 s) in analyzing HBase.

7.7 Effort and False Positive
The static analysis and instrumentation steps in Legolas are
fully automated. The fault injection experiment does not re-
quire manual tuning. Our workload drivers are adapted from
existing test cases and re-usable across versions. The main
effort in using Legolas is to confirm a bug after testing. How-
ever, this is common for testing tools, not a unique requirement
of Legolas. For the new bug finding exercise in Section 7.2,
it roughly takes a graduate student author one to two weeks
per system to examine the testing results, read and understand
the relevant source code, and confirm where the bug is.

A false positive occurs if the fault being injected turns out
to be impossible in reality. We observe such false positives

cassandra flink hbase hdfs kafka
zookeeper

0

20

40

60

Du
ra

tio
n

(s
)

Figure 13: Distribution of one fault injection trial duration.

ZooKeeper HDFS Kafka Cassandra HBase Flink

w/ i.i.a 0 0 0 0 0 0
w/o i.i.a 45 (6) 20 (9) 0 894 (10) 86 (10) 0

Table 6: Number of trials that have invalid injections, with and
without the invalid injection analysis in Section 3. The numbers in
parentheses are the unique locations of these invalid injections.

in initial development of Legolas and they are caused by
the same problem: it injects an IOException to a function
that declares IOException in its signature but cannot possibly
have I/O errors. For example, we inject an IOException to the
writeBoolean call inside the Cassandra serialize method.
This injection triggers a buggy symptom. However, this
method uses a memory buffer for the writeBoolean call.

As described in Section 3, we introduce an inter-procedural,
context-sensitive analysis to eliminate such false injections.
Table 6 shows the number of false injection trials for each
system with and without this analysis. The result shows that the
analysis successfully eliminates all of these invalid injections.

Another potential source of false injection is the automatic
exception instance creation. Our method may create some
invalid exception instances. However, we did not observe such
false positives in our experiments.

Our failure checkers (Section 5.3) can make mistakes. When
they mark a trial as being suspicious, it may turn out not to be a
bug. For example, in ZooKeeper, the write requests to followers
are forwarded to the leader. When the client checker flags a trial
where a fault is injected in node 1 and the clients connected
to node 2 experience write timeouts, it is possible that the
node 1 is the leader and it is temporarily unavailable because
of the delay injection. Developers may consider this to be a
false positive, but the false positive is from the checker rather
than the fault injection—the injected fault is legitimate. Our
current checkers are basic. From our experience, to enhance
checkers with more comprehensive bug rules, the knowledge
of system-specific protocols and modularity practices must
be exploited. After the enhancement, developers may still
disagree on the definition of a bug. However, Legolas’s core
contribution is on fault injection methodology.

Our bug confirmation process is as follows. We first utilize
the basic checkers to highlight suspicious trials. For each
suspicious trial, we analyze how the fault propagates its effect
from one component to another and leads to the suspicious
symptom. We then diagnose whether that is a bug and check
if the design documentation describes the expected behavior.
Finally, we will report it to developers to discuss with them.

8 Discussion and Limitations
Our ASV inference currently only analyzes states inside the
task classes and the task entry functions. Thus, the inferred
ASVs for each task are relatively coarse-grained. The analysis
can be extended to other task functions and states that are
passed to other classes through function calls, which will
extract more detailed ASVs. However, it is not always the
more detailed the better. A large system typically has tens to
hundreds of task classes, so too fine-grained ASVs can lose
the benefits of effectively grouping injection requests.

Our workload drivers use workloads on a small scale to
exercise the target system. More workloads can be added to
the Legolas workload drivers, which is not a difficult task and
would allow Legolas to expose fault-induced bugs that require
large workloads (e.g., performance bugs).

Legolas injects a single fault in one fault injection trial.
It would miss bugs triggered by multiple faults. Supporting
injection of multiple faults in Legolas only requires a simple
change. However, the decision algorithm and failure checkers
would likely require significant changes. Indeed, we tried
enabling multi-fault injection for the ZooKeeper experiment,
but it only improved the efficiency for one bug.

Legolas does not explicitly control non-determinism in the
target system, such as thread schedules, which is the focus of
concurrency testing tools. Thus, while Legolas can expose a
concurrency bug, it may not expose it reliably or efficiently.
Legolas can be combined with concurrency testing tools.

9 Related Work
Fault Injection. Early fault injection work targets standalone
software. Faults are injected into hardware, simulated en-
vironment [20], or libraries (LFI [43]). Fault injection test-
ing becomes popular in distributed systems with much re-
search [2–4,7, 13,15,24,26,27,40,45]. Many inject coarse-
grained faults externally such as node crashes to expose proto-
col or crash recovery bugs. The injection is done randomly, or
exhaustively, or based on user specifications. Several solutions
proposed more advanced techniques. For example, LDFI [3]
leverages data lineage to inject crashes or network faults if
the faults could prevent correct outcomes; CrashTuner [40]
injects crashes when meta-info variables are accessed.

Legolas focuses on complex partial failure bugs. It uses an
instrumentation approach to inject system-specific, instruction-
level faults within a target system. It designs a novel static
analysis method that automatically infers abstract states from
distributed system code. Its decision algorithm leverages the
abstract states to efficiently explore the fault space.

Recent fault injection research addresses other applications,
such as multi-threaded programs [32], cluster-management
controllers [51], microservices [44, 57], and REST applica-
tions [8]. Legolas is orthogonal to these efforts. It targets
large-scale distributed systems and aims to expose partial
failure bugs triggered by exceptions or delays in the operations

of a component within a distributed system node.
Model Checking. Model checking enumerates the possible
interleaving of non-deterministic events such as messages.
It has been applied to distributed systems [18, 29, 31, 50,
54]. Distributed system model checkers (dmcks) including
MODIST [54], SAMC [31], and FlyMC [42] also explore the
interleaving of crash/reboot failure events. Legolas shares
high-level similarity with these solutions in that it systemat-
ically explores the fault injection space. However, Legolas
is a complementary effort. Existing dmcks target protocol
bugs caused by complex interleaving of node-level events,
while Legolas targets implementation-level bugs triggered by
diverse faults in fine-grained program instructions. Legolas
can leverage a dmck to drive the target system into unexplored
states, allowing Legolas to try more injections.
Distributed Concurrency Bug Detection. Several
projects [33,35,39,56] aim to detect concurrency bugs in dis-
tributed systems. FCatch [35] applies happens-before analysis
on correct execution traces to identify unprotected conflicting
operations. Legolas is a general fault injection framework
aiming to expose diverse bugs.
Partial Failure Detection. Failure detectors are part of a
running production distributed system to determine whether
the system is faulty or not. Recent works [22,36,41,47] explore
advanced detectors for the notorious partial failures. Legolas
is an offline testing tool. It can leverage these advanced
techniques in its checkers to find more bugs in testing.
Error Handling Bug Detection. Error handling code is
known to be buggy. Studies [36, 55] have shown that this is
also true for distributed systems. Aspirator [55] uses rules
to statically find simple error handling bugs such as empty
handlers. Legolas focuses on fault injection to systematically
test distributed systems and uncover diverse types of bugs.

10 Conclusion

This paper presents Legolas, a fault injection testing frame-
work that aims to catch complex partial failure bugs in large
distributed systems. Legolas uses static analysis to enable
fine-grained, system-specific fault injection. It designs a novel
method to extract abstract states from system code and uses
them to efficiently explore the fault injection space. We apply
Legolas on six distributed systems and find 20 new bugs. Lego-
las is available at https://github.com/OrderLab/Legolas.

Acknowledgments
We thank our shepherd, Peter Alvaro, and the anonymous
reviewers for their valuable and detailed feedback that im-
proved our work. We appreciate the help from the developers
of the open-source distributed systems we evaluated. We
thank CloudLab [11] for providing the resources to run our
experiments. This work was supported in part by NSF grants
CNS-2317698, CNS-2317751, and CCF-2318937.

https://github.com/OrderLab/Legolas

References

[1] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan,
and Samer Al-Kiswany. Toward a generic fault toler-
ance technique for partial network partitioning. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 351–368. USENIX
Association, November 2020.

[2] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta,
and Samer Al-Kiswany. An analysis of network-
partitioning failures in cloud systems. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI ’18, pages 51–68,
Berkeley, CA, USA, 2018. USENIX Association.

[3] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein.
Lineage-driven fault injection. In Proceedings of the
2015 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’15, pages 331–346, New
York, NY, USA, 2015. ACM.

[4] Cory Bennett and Ariel Tseitlin. Chaos monkey released
into the wild. http://techblog.netflix.com/2012/07/
chaos-monkey-released-into-wild.html, 2009.

[5] Dmitry Bugaychenko. Kafka production failure because
of BadVersionException. https://issues.apache.org/
jira/browse/KAFKA-1407, 2014.

[6] Haicheng Chen, Wensheng Dou, Yanyan Jiang, and Feng
Qin. Understanding exception-related bugs in large-scale
cloud systems. In Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engi-
neering, ASE ’19, page 339–351. IEEE Press, 2020.

[7] Haicheng Chen, Wensheng Dou, Dong Wang, and Feng
Qin. CoFI: Consistency-guided fault injection for cloud
systems. In Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
ASE ’20, page 536–547, New York, NY, USA, 2021.
Association for Computing Machinery.

[8] Yinfang Chen, Xudong Sun, Suman Nath, Ze Yang,
and Tianyin Xu. Push-Button reliability testing for
Cloud-Backed applications with rainmaker. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1701–1716, Boston,
MA, April 2023. USENIX Association.

[9] Kim Christensen. Kafka partial cluster break-
down. https://issues.apache.org/jira/browse/

KAFKA-3577, 2016.

[10] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:
Understanding the impact of limpware on scale-out cloud

systems. In Proceedings of the 4th Annual Symposium
on Cloud Computing, SOCC ’13, pages 14:1–14:14, New
York, NY, USA, 2013. ACM.

[11] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuangching Wang,Glenn Ricart,Larry Landweber,Chip
Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin
Kar, and Prabodh Mishra. The design and operation of
CloudLab. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pages 1–14, Renton, WA, jul
2019. USENIX Association.

[12] Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph
Idziorek, Richard Krog, Colin Lazier, Erben Mo,
Akhilesh Mritunjai, Somasundaram Perianayagam, Tim
Rath,Swami Sivasubramanian, James Christopher Soren-
son III, Sroaj Sosothikul, Doug Terry, and Akshat Vig.
Amazon DynamoDB: A scalable, predictably perfor-
mant, and fully managed NoSQL database service. In
Proceedings of the 2022 USENIX Annual Technical Con-
ference, USENIX ATC ’22, pages 1037–1048, Carlsbad,
CA, July 2022. USENIX Association.

[13] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Re-
dundancy does not imply fault tolerance: Analysis of
distributed storage reactions to single errors and corrup-
tions. In Proceedings of the 15th Usenix Conference on
File and Storage Technologies, FAST ’17, page 149–165,
USA, 2017. USENIX Association.

[14] Supriyo Ghosh, Manish Shetty, Chetan Bansal, and
Suman Nath. How to fight production incidents? an
empirical study on a large-scale cloud service. In Pro-
ceedings of the 13th Symposium on Cloud Computing,
SoCC ’22, page 126–141, New York, NY, USA, 2022.
Association for Computing Machinery.

[15] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Al-
varo, Joseph M. Hellerstein, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, Koushik Sen, and Dhruba
Borthakur. FATE and DESTINI: A framework for cloud
recovery testing. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implemen-
tation, NSDI’11, pages 238–252, Berkeley, CA, USA,
2011. USENIX Association.

[16] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,
Agung Laksono, Anang D. Satria, Jeffry Adityatama, and
Kurnia J. Eliazar. Why does the cloud stop computing?:
Lessons from hundreds of service outages. In Proceed-
ings of the 7th ACM Symposium on Cloud Computing
(SoCC), pages 1–16, October 2016.

http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
https://issues.apache.org/jira/browse/KAFKA-1407
https://issues.apache.org/jira/browse/KAFKA-1407
https://issues.apache.org/jira/browse/KAFKA-3577
https://issues.apache.org/jira/browse/KAFKA-3577

[17] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin
Harms, Robert B. Ross, Andree Jacobson, Robert Ricci,
Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe
Hao, and Huaicheng Li. Fail-slow at scale: Evidence of
hardware performance faults in large production systems.
In Proceedings of the 16th USENIX Conference on
File and Storage Technologies, FAST’18, pages 1–14,
Berkeley, CA, USA, 2018. USENIX Association.

[18] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Jun-
feng Yang, and Lintao Zhang. Practical software model
checking via dynamic interface reduction. In Proceed-
ings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, October 2011.

[19] Tsuyoshi Hombashi. tcconfig: A tc command wrapper.
https://github.com/thombashi/tcconfig, 2022.

[20] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K.
Iyer. Fault injection techniques and tools. Computer,
30(4):75–82, April 1997.

[21] Lexiang Huang, Matthew Magnusson, Abishek Ban-
galore Muralikrishna, Salman Estyak, Rebecca Isaacs,
Abutalib Aghayev, Timothy Zhu, and Aleksey Chara-
pko. Metastable failures in the wild. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI ’22, pages 73–90, Carlsbad, CA, July
2022. USENIX Association.

[22] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong
Zhou, and Yingnong Dang. Capturing and enhancing
in situ system observability for failure detection. In
13th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’18, pages 1–16. USENIX
Association, October 2018.

[23] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray failure: The Achilles’ heel of cloud-
scale systems. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems, HotOS XVI, British
Columbia, Canada, May 2017. ACM.

[24] LLC. Jepsen. Jepsen: a framework for distributed sys-
tems verification, with fault injection. https://github.
com/jepsen-io/jepsen, 2023.

[25] Jiahongchao. updateisr should stop after failed several
times due to zkVersion issue. https://issues.apache.

org/jira/browse/KAFKA-3042, 2015.

[26] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen.
PREFAIL: A programmable tool for multiple-failure

injection. In Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’11, pages 171–
188, New York, NY, USA, 2011. ACM.

[27] Xiaoen Ju,Livio Soares,Kang G. Shin,Kyung Dong Ryu,
and Dilma Da Silva. On fault resilience of OpenStack.
In Proceedings of the 4th Annual Symposium on Cloud
Computing, SoCC ’13, pages 2:1–2:16, New York, NY,
USA, 2013. ACM.

[28] Pravein Govindan Kannan, Nishant Budhdev, Raj Joshi,
and Mun Choon Chan. Debugging transient faults in
data centers using synchronized network-wide packet
histories. In Proceedings of the 18th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’21, pages 253–268. USENIX Association, April
2021.

[29] Charles Killian, James W. Anderson, Ranjit Jhala, and
Amin Vahdat. Life, death, and the critical transition:
Finding liveness bugs in systems code. In 4th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI 07), Cambridge, MA, April 2007. USENIX
Association.

[30] Kyle Kingsbury and Peter Alvaro. Elle: Inferring isola-
tion anomalies from experimental observations. Proc.
VLDB Endow., 14(3):268–280, November 2020.

[31] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi
Joshi, Jeffrey F. Lukman,and Haryadi S. Gunawi. SAMC:
Semantic-aware model checking for fast discovery of
deep bugs in cloud systems. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation, OSDI ’14, page 399–414, USA, 2014.
USENIX Association.

[32] Guangpu Li, Shan Lu,Madanlal Musuvathi, Suman Nath,
and Rohan Padhye. Efficient scalable thread-safety-
violation detection: Finding thousands of concurrency
bugs during testing. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 162–180, New York, NY, USA, 2019. Association
for Computing Machinery.

[33] Haopeng Liu, Guangpu Li, Jeffrey F. Lukman, Jiaxin Li,
Shan Lu, Haryadi S. Gunawi, and Chen Tian. Dcatch:
Automatically detecting distributed concurrency bugs
in cloud systems. In Proceedings of the Twenty-Second
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS ’17, pages 677–691. ACM, April 2017.

[34] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman
Nath. What bugs cause production cloud incidents? In
Proceedings of the Workshop on Hot Topics in Operating

https://github.com/thombashi/tcconfig
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen
https://issues.apache.org/jira/browse/KAFKA-3042
https://issues.apache.org/jira/browse/KAFKA-3042

Systems, HotOS ’19, page 155–162, New York, NY, USA,
2019. Association for Computing Machinery.

[35] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye,
and Chen Tian. FCatch: Automatically detecting time-
of-fault bugs in cloud systems. In Proceedings of the
Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’18, pages 419–431. ACM, 2018.

[36] Chang Lou, Peng Huang, and Scott Smith. Understand-
ing, detecting and localizing partial failures in large sys-
tem software. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
559–574, Santa Clara, CA, February 2020. USENIX
Association.

[37] Chang Lou, Yuzhuo Jing, and Peng Huang. Demysti-
fying and checking silent semantic violations in large
distributed systems. In Proceedings of the 16th USENIX
Symposium on Operating Systems Design and Implemen-
tation, OSDI ’22, pages 91–107, Carlsbad, CA, USA,
July 2022. USENIX Association.

[38] Haonan Lu,Kaushik Veeraraghavan,Philippe Ajoux, Jim
Hunt, Yee Jiun Song, Wendy Tobagus, Sanjeev Kumar,
and Wyatt Lloyd. Existential consistency: Measuring and
understanding consistency at facebook. In Proceedings
of the 25th Symposium on Operating Systems Principles,
SOSP ’15, page 295–310, New York, NY, USA, 2015.
Association for Computing Machinery.

[39] Jie Lu, Feng Li, Lian Li, and Xiaobing Feng. CloudRaid:
hunting concurrency bugs in the cloud via log-mining. In
Proceedings of the 2018 ACM JointMeeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, FSE ’18, pages
3–14. ACM, November 2018.

[40] Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan,
Jun Yang, and Liang You. CrashTuner: Detecting crash-
recovery bugs in cloud systems via meta-info analysis. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 114–130, New York,
NY, USA, 2019. Association for Computing Machinery.

[41] Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu,
Zhaosheng Zhu, Mengtian Wang, Zongpeng Zhu, Guang-
tao Xue, Jiwu Shu, Minglu Li, and Jiesheng Wu.
PERSEUS: A fail-slow detection framework for cloud
storage systems. In Proceedings of the 21st USENIX
Conference on File and Storage Technologies, FAST ’23,
USA, 2023. USENIX Association.

[42] Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O.
Suminto, Daniar H. Kurniawan, Dikaimin Simon, Satria

Priambada, Chen Tian, Feng Ye, Tanakorn Leesataporn-
wongsa, Aarti Gupta, Shan Lu, and Haryadi S. Gunawi.
FlyMC: Highly scalable testing of complex interleavings
in distributed systems. In Proceedings of the Fourteenth
EuroSys Conference 2019, EuroSys ’19, New York, NY,
USA, 2019. Association for Computing Machinery.

[43] Paul D. Marinescu and George Candea. LFI: A practical
and general library-level fault injector. In 2009 IEEE/I-
FIP International Conference on Dependable Systems
Networks, DSN ’09, pages 379–388. IEEE, June 2009.

[44] Christopher S. Meiklejohn,Andrea Estrada,Yiwen Song,
Heather Miller, and Rohan Padhye. Service-level fault
injection testing. In Proceedings of the ACM Sympo-
sium on Cloud Computing, SoCC ’21, page 388–402,
New York, NY, USA, 2021. Association for Computing
Machinery.

[45] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli,
Pandian Raju, and Vĳay Chidambaram. Finding crash-
consistency bugs with bounded black-box crash testing.
In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation, OSDI
’18, page 33–50, USA, 2018. USENIX Association.

[46] Donny Nadolny. Debugging distributed systems. In
SREcon 2016, Santa Clara, CA, April 7-8 2016.

[47] Biswaranjan Panda, Deepthi Srinivasan, Huan Ke, Karan
Gupta, Vinayak Khot, and Haryadi S. Gunawi. IASO:
A fail-slow detection and mitigation framework for dis-
tributed storage services. In Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Con-
ference, USENIX ATC ’19, page 47–61, USA, 2019.
USENIX Association.

[48] Casey Rosenthal, Lorin Hochstein, Aaron Blohowiak,
Nora Jones, and Ali Basiri. Chaos Engineering. O’Reilly
Media, Inc., 2017.

[49] ScyllaDB. CharybdeFS: A fuse based fault injection
filesystem. https://github.com/scylladb/charybdefs,
2021.

[50] Jiri Simsa, Randy Bryant, and Garth Gibson. dbug:
Systematic evaluation of distributed systems. In 5th
International Workshop on Systems Software Verifica-
tion (SSV 10), Vancouver, BC, October 2010. USENIX
Association.

[51] Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya
Ganesan, Ramnatthan Alagappan, Michael Gasch, Lalith
Suresh, and Tianyin Xu. Automatic reliability testing
for cluster management controllers. In Proceedings of
the 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’22, pages 143–159,
Carlsbad, CA, July 2022. USENIX Association.

https://github.com/scylladb/charybdefs

[52] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vĳay Sundaresan. Soot - a
java bytecode optimization framework. In Proceedings
of the 1999 Conference of the Centre for Advanced
Studies on Collaborative Research, CASCON ’99, pages
13–, Mississauga, Ontario, Canada, 1999. IBM Press.

[53] Alex Wilson. Bytecode-level fault injection for the JVM.
https://github.com/mrwilson/byte-monkey, 2019.

[54] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu,
Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan Long,
Lintao Zhang, and Lidong Zhou. MODIST: Transpar-
ent model checking of unmodified distributed systems.
In Proceedings of the 6th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI ’09,
page 213–228, USA, 2009. USENIX Association.

[55] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna
Rodrigues, Xu Zhao, Yongle Zhang, Pranay U. Jain,
and Michael Stumm. Simple testing can prevent most
critical failures: An analysis of production failures in
distributed data-intensive systems. In Proceedings of the
11th USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, pages 249–265, Berkeley,
CA, USA, 2014. USENIX Association.

[56] XinHao Yuan and Junfeng Yang. Effective concurrency
testing for distributed systems. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, pages 1141–1156. ACM, March
2020.

[57] Jun Zhang, Robert Ferydouni, Aldrin Montana, Daniel
Bittman, and Peter Alvaro. 3MileBeach: A tracer with
teeth. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC ’21, page 458–472, New York, NY,
USA, 2021. Association for Computing Machinery.

CharybdeFS tcconfig Byte-monkey
FS syscalls error, delay packet loss, delay exceptions

moderate 10%, 8 s 20%, 300 ms 10%
mild 1%, 1 s 10%, 80 ms 1%

Table 9: Configurations of the baseline tools.

System Release SLOC Workload

ZK 3.6.2 95K 3 clients create 10 entries in total, each writes
and reads a random entry 40 times.

HDFS 3.2.2 689K 5 clients each writes a 10KB file 5 times, 5
clients each reads 5 files 5 times.

Kafka 2.8.0 322K 3 clients creates 15 topics, 15 clients each pro-
duces a topic, 30 clients consume a topic.

HBase 2.4.2 728K creates 5 tables, each with 5 columns, each with
5 rows, 5 clients r/w a random row 100 times.

Cassandra 3.11.10 210K creates 1 table, inserts 5 rows, 3 clients select
and update a random table field 100 times

Flink 1.14.0 78K 1 client submit batch workload, 1 client submit
streaming workload, 1 Kafka consumer to re-
ceive 170 messages from the batch workload,
1 Kafka producer to send 5 messages to the
streaming workload, 1 Kafka consumer to re-
ceive 10 messages from the streaming workload

Table 7: Evaluated distributed systems in latest releases, and the
workload Legolas uses in the fault injection experiments.

zk
hd

fs ka hb cs
d

byte-monkey

0
500

1000
1500
2000

of

 tr
ia

ls

zk
hd

fs ka hb cs
d

charybdefs

0
500

1000
1500
2000

zk
hd

fs ka hb cs
d

tcconfig

0
500

1000
1500
2000

fail_to_start
early_fail

partial_warmup
zero_progress

partial_progress
finish_workload

(a) w/ moderate fault injection config.

zk
hd

fs ka hb cs
d

byte-monkey

0
500

1000
1500
2000

of

 tr
ia

ls

zk
hd

fs ka hb cs
d

charybdefs

0
500

1000
1500
2000

zk
hd

fs ka hb cs
d

tcconfig

0
500

1000
1500
2000

(b) w/ mild fault injection config.
Figure 14: 2000 fault injection trials with existing tools: Byte-
monkey, CharybdeFS, tcconfig.

Appendix A Evaluation Details

Table 8 lists the injected fault, symptom, and root cause for
each of the 20 new bugs that Legolas finds.

Table 9 shows the configuration settings we use for the
baseline fault injection tools (Byte-monkey, CharybdeFS, and
tcconfig) in the evaluation.

Figure 14 shows the aggregated fault injection results using
the baseline tools.

https://github.com/mrwilson/byte-monkey

Bug Id Injected Fault Symptom Root Cause

ZK-4074 delay when Learner is executing
writePacket

requests to one follower get stuck and the follower cannot
rejoin the quorum for a long time

write in a critical section and prevents
QuorumPeer from entering the receiving stage

ZK-4203 an exception during accepting a con-
nection from the second follower

one follower keeps trying to join the quorum but keeps
failing, even though the other 2 nodes get the request

the ERROR state set by learner is not discovered
by the leader in some condition

ZK-4419 an exception when a learner creates
a socket to connect to leader

one follower takes a long time to join the quorum and causes
temporary service unavailability

the server state is prematurely changed, which
triggers unnecessary re-election

ZK-4424 an exception when leader is config-
uring socket options for a follower

causes re-election and partial service unavailability error is unnecessarily re-thrown, which causes
handler exit and costly re-creations

KA-13457 an exception when a broker is accept-
ing a connection

some client requests to create topics experience InvalidRepli-
cationFactorException errors for a long time

error is swalloed without closing the socket
channel

KA-13468 an exception when the log manager
initalize a log

a broker proceeds but consumers hang for more than 3
minutes without any error log

the log manager should handle the error but
instead let it propagate to the request handler

KA-13538 an exception when a broker is access-
ing checkpoint file

some clients get unexpected TopicExistsException even
though they have never created the topic before

a design flaw in the client library for handling
broker change

KA-14882 a delay when a broker sends request
to ZooKeeper

some retry of topic creation requests gives the client Top-
icExistsException

broker controllers do not roll back the meta-
data in ZooKeeper when topic creation fails

KA-14886 a delay when handling a request from
consumer and storing data to disk

a critical thread pool in broker gets full soon after the delay
of a single request from client

the delayed thread blocks multiple threads and
causes the thread pool to be used up

HD-15925 IOException when a datanode is for-
warding a packet to the mirror

normally a client is immediately notified of the error, but
now the client hangs for 1min

race condition causes PacketResponder to be
blocked without notifying the client

HD-15957 exception when namenode finishes
sync edit log andnotifies journalnode

some client hangs forever without any log and the expected
file does not exist in HDFS

namenode dismisses one client RPC, adding
retry of the notification resolves the issue

HD-15869 delay when namenode sends the edit
log notifications

namenode hangs even with the async edit logging the notification sending is performed syn-
chronously and blocks queued edit logs

HA-17552 error after the namenode accepts a
socket before creating a reader

some client hangs instead of timing out after ping interval read method does not re-throw the socket
timeout exception

HA-18024 an exception when namenode con-
figures socket options

some client hangs for a long time socket connection is not closed when error
happens

HB-26256 a delay when the region server tries
to open a region using HDFS RPC

table creation command hangs for a long time without any
error but list command shows the table exists

region sequence idfile write operation is block-
ing without any timeout

HB-26955 an exception when the master tries
to do an update operation

some table create requests experience a long delay retry code misses the case when a server is
quickly reinitialized

CS-16603 a delay in serializing a mutation to
commit log in node 2

clients to node 1 experience sporadic CQL operation timeout
due to unconfigured table

the add method is not protected with a timeout

CS-17564 exception when deleting file during
a compaction task

node continues after erroreous startup state and later causes
client failures

missing sync. to wait for compaction comple-
tion before setting node startup flag

FL-30032 an IOException when sending a wa-
termark to Kafka

synchronous batch processing request from client finishes
without errors while the job is actually not finished

the exception is not handled properly and then
a few messages do not get sent to Kafka

FL-31746 an IOException when task managers
finish a job and commit some data

when the job is finished, the client throws confusing errors
due to a fault in commit phase

The commit phase does not affect the correct-
ness of output but its fault is propogated to
the client with confusing messages

Table 8: New bugs found by Legolas. All issues cause partial failure symptoms. The root causes are diverse. ZK: ZooKeeper; KA: Kafka; HD:
HDFS; HA: Hadoop; HB: HBase; CS: Cassandra; FL: Flink.

	Introduction
	Overview of Legolas
	Identify and Instrument Injection Points
	Abstract State Guided Fault Injection
	State Representation Choices
	Infer Abstract State Variables
	Injection Decision Algorithm

	Testing Experiment
	Injection Trial
	Workload Driver
	Failure Checkers

	Implementation
	Evaluation
	Injection Points and Abstract States
	Finding New Bugs
	Impact of Abstract States and BSRR
	Comparing with Other Solutions
	Exposing Known Bugs
	Performance
	Effort and False Positive

	Discussion and Limitations
	Related Work
	Conclusion
	Evaluation Details

