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Abstract
Mobile apps have become indispensable in our daily lives,
but many apps are not designed to be energy-aware so they
may consume the constrained resources on mobile devices in
a wasteful manner. Blindly throttling heavy resource usage,
while helping reduce energy consumption, prohibits apps
from taking advantage of the resources to do useful work.
We argue that addressing this issue requires the mobile OS
to continuously assess if a resource is still truly needed even
after it is granted to an app.
This paper proposes that lease, a mechanism commonly

used in distributed systems, is a well-suited abstraction in
resource-constrained mobile devices to mitigate app energy
misbehavior. We design a lease-based, utilitarian resource
management mechanism, LeaseOS, that analyzes the utility
of an allocated resource to an app at each lease term, and
then makes lease decisions based on the utility. We imple-
ment LeaseOS on top of the latest Android OS and evaluate it
with 20 real-world apps with energy bugs. LeaseOS reduces
wasted power by 92% on average and significantly outper-
forms the state-of-the-art Android Doze and DefDroid. It also
does not cause usability disruption to the evaluated apps.
LeaseOS itself incurs small energy overhead.

CCS Concepts • Computer systems organization →
Reliability; • Software and its engineering→ Operating
systems; • Human-centered computing → Ubiquitous
and mobile computing systems and tools.

Keywords Mobile apps; Operating system; Lease; Energy
Efficiency
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1 Introduction
Mobile devices today offer massive programmability for
third-party developers to write apps. For example, the An-
droid 7 SDK provides 30,662 APIs. But rich interfaces do not
mean mobile programming is easy. Indeed, app developers
have to make careful optimizations when using constrained
resources and consider device variability. With many possi-
ble events occurring due to user interaction, environment
conditions, and runtime changes [38], reasoning about the
code and testing the app is also hard [47, 58]. For app de-
velopers who lack training in system programming, these
issues are especially challenging to deal with.

A severe type of defects developers frequently introduce in
their apps is energy bugs [34, 35, 50, 55, 58] that drain battery
abnormally fast. For example, wakelock is a mechanism in
Android for apps to instruct the OS to keep the CPU, screen,
WiFi, radio, etc., on active state. The intended usage is to
acquire a wakelock before a critical operation and release it
as soon as the operation is finished. In practice, apps may
make an acquire request and forget to call release in some
code paths or call it very late. Similarly, iOS manages the
audio resource via audio sessions to apps. The Facebook
iOS app had a buggy release [19] that would leak the audio
sessions in some scenarios, leaving the app doing nothing
but staying awake in the background draining the battery.
That release also had a bug in the network handling code that
would incur long CPU spins without making any progress.

While solutions exist to help remove energy bugs be-
fore release with better app testing [32, 51, 60], bug detec-
tion [44, 46, 56, 66], and libraries [30], complex energy bugs
can still escape these tools. It is therefore important to de-
sign techniques to mitigate energy bugs at runtime. After all,
energy bugs can cause damage at user side in part because
existing mobile system is insufficient in protecting resources.

State-of-the-art runtime techniques [17, 41, 45, 52] moni-
tor app resource usage, and kill or throttle apps if the usage
exceeds a threshold. But making heavy use of a resource
does not necessarily imply misbehavior. There are legitimate
scenarios where the usage is justified, e.g., for navigation or
gaming. Blind throttling can break app functionalities. We

https://doi.org/10.1145/3297858.3304057
https://doi.org/10.1145/3297858.3304057


argue that the missing piece is a mobile resource manage-
ment mechanism to continuously assess whether a resource
is still truly useful to the app after the resource is granted.
This paper proposes that lease [40], a mechanism com-

monly used in distributed systems for managing cache con-
sistency, is a well-suited abstraction to close this gap. In
distributed caches, a lease is a contract between a server
and a client that gives the holder rights to access a datum
for the term of the lease. Within the lease term, the client’s
read accesses do not need the server’s approval. After the
term, if the lease is not renewed, e.g., due to client crash
or network partition, the server can safely proceed without
waiting indefinitely.

Although mobile app energy misbehavior is a different
problem domain, the essential abstraction of leases can be
extended to mobile devices as a contract between the OS and
an app about a resource (e.g., wakelock, GPS, sensor) with a
condition on time. This abstraction brings two benefits. First,
leases can tolerate sloppy resource usage mistakes that are
common in apps (e.g., only release wakelock in onDestroy). A
lease-backed resource by default expires at the end of a term
unless it is explicitly renewed, either by the app or by the OS.
In the cases where the lease term is larger than the needed
duration, even if an app forgets to release the resource, the
amount of wasted energy will be reduced. In comparison,
a resource managed by the existing mechanism by default
persists after being granted, unless it is explicitly released;
this encourages superfluous holding. Second, compared to
the blind one-shot throttling approach, a single lease allows
a series of small terms, and at the end of each term, a lease
decision is made based on the past behavior. This feedback
loop allows lease decisions to adapt to changing app behavior,
e.g., from low resource utilization to high utilization. In this
way, app developers are also relieved from the burden of
carefully keeping track resources to avoid wasting energy.

We present, LeaseOS, a lease-based mobile resource man-
agement mechanism to mitigate app energy misbehavior. In
LeaseOS, a resource granted to an app can be backed by a
lease with one or multiple terms. If the app still holds the
resource at the end of a term, the lease will be either ex-
tended or deferred (temporarily expired). An attempt to use
resources with an expired lease later requires approval by
the lease manager.

A core challenge of LeaseOS is to make appropriate lease
decisions including whether to renew a lease and the length
of a term. Ideally, the decisions should effectively mitigate
energy misbehavior, but should not deprive apps of the le-
gitimate use of resources. A straightforward lease policy is
to use the resource holding time [45, 52]. But through study-
ing real-world apps (§2), we find this metric is a misleading
classifier for energy misbehavior. LeaseOS instead takes a
utilitarian approach in its lease management decisions. We
introduce a novel measure, utility, to enhance leases, which
describes the quantity of “usefulness” that an app obtains

from a granted resource. Thinking from the utility perspec-
tive allows us to further break down energy misbehavior
into four classes and accurately capture three of them.

To transparently integrate leases into existing mobile sys-
tems, LeaseOS designs app-oblivious lease management that
handles all lease operations including creation and renewal
happen behind the scene. At each lease term, LeaseOS col-
lects a set of generic utility scores to measure the resource
utility information. In this way, no changes to app source
code are required. LeaseOS also provides a simple API to
leverage semantic information from developers by allow-
ing apps to optionally define a custom utility function. The
return value of this function is taken as a hint when the
generic utility score is not too low to prevent developers
from abusing this API.
We implemented LeaseOS on Android release 7.1.2. To

evaluate LeaseOS, we reproduced 20 real-world apps with
different kinds of energy defects. When running these buggy
apps on LeaseOS, the wasteful power consumption can be re-
duced by an average of 92%. In comparison, two state-of-the-
art runtime solutions, Android Doze [28] and DefDroid [45],
only reduce the power consumption by an average of 69%
and 62%, respectively. LeaseOS also did not cause usability
disruption to the evaluated apps because the temporarily
revoked resources indeed did not contribute to the utility of
these apps. LeaseOS incurs <1% power overhead.
This papers makes the following contributions:

• analysis of energy misbehavior runtime characteristics
and classification of misbehavior into four classes.

• a study on 109 real-world energy defect cases to under-
stand the prevalence of different misbehavior types.

• adapting the lease abstraction into mobile system to
mitigate common energy misbehavior.

• design and implementation of a lease-based, utilitarian
resource management mechanism, LeaseOS.

• an evaluation that demonstrates the practical benefits
of LeaseOS’s approach.

2 Understanding Energy Misbehavior
To improve system-level runtime solutions for app energy
misbehavior, it is useful to first understand how buggy apps
behave at runtime. For this purpose, we reproduced and an-
alyzed five real-world buggy apps on multiple smartphones
and environments. We highlight three cases and our main
insights in this Section, followed by a quantitative study on
109 real-world energy misbehavior cases.

2.1 Real-world Cases and Experiment Setup

Case I.K-9mail [26] is a widely-used Android email app. The
app had a defect that when the network is disconnected or
the mail server fails, the app would encounter an exception
and handle it by retrying indefinitely. For each retrying, the
app would acquire a wakelock, which keeps the device on



causing severe battery drain. Developers fixed the issue by
adding an exponential back-off and prompt wakelock release.
Case II. Kontalk [27] is a popular messaging app. When
a user logs in, Kontalk authenticates with a server and es-
tablishes a connection. In one version, the app acquires a
wakelock when the service is created and only releases it
when the service is destroyed. This forces the CPU to stay ac-
tive for a long time. Developers fixed the defect by releasing
the wakelock as soon as the app is authenticated.
Case III. BetterWeather [23] is a widget that shows the
weather condition based on the user’s current location. One
of its releases causes high battery drain when a device is
unable to get a GPS lock, e.g., inside a building. The root cause
is that the app’s requestLocation method keeps searching
for GPS non-stop in an environment with poor GPS signals.

To capture the runtime characteristics of the buggy apps,
we build a profiling tool that samples a vector of per-app
metrics every 60s , e.g., wakelock time, CPU usage (sysTime +
userTime). The experiments are run on five different Android
phones: Google Pixel XL, Nexus 6, Nexus 4, Samsung Galaxy
S4, and Motorola G. They represent high-end to low-end
smartphones with decreasing hardware capability and bat-
tery capacity. Their software ecosystems are also different,
with Pixel, Samsung and Moto phones being heavily used
and the Nexus phones being lightly used.

2.2 Analytical Model: Ask-Use-Release
Through the real-world apps, we seek answers for several
questions: what is energy misbehavior? what are the com-
mon patterns of energy misbehavior? why is existing mobile
resource management mechanism insufficient?

From studying the code patterns of energy bug cases, we
find that the intrinsic characteristic of energy misbehavior
is captured by an abstract model used in the existing mo-
bile OSes: ask-use-release. Under this model, an app 1) asks
for (tries to acquire) a resource; 2) after basic checks, the
resource is granted; 3) the app uses the resource to do some
work; 4) the app releases the resource in the end. This model,
while intuitive to understand, is not friendly to use for app
developers who are inexperienced in efficiently managing
resources, because it makes three assumptions: (a) the re-
quester can get the requested resource in a short time; (b)
the duration of holding the resource is finite; (c) the resource
is released as soon as the necessary work is completed. All of
the three assumptions can be error-prone that lead to energy
misbehavior, as analyzed in our experiments.

2.3 Experimental Results and Observations
Misbehavior in the Ask stage We run the buggy Better-
Weather app (case III) for more than 1 hour on the Nexus
phone in a building with weak GPS signals. Figure 1 shows
the GPS request duration over time. Each point is measured
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Figure 1. BetterWeather’s GPS try duration every 60s.
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Figure 2.Wakelock holding time and CPU usage of buggy K-
9 mail in a connected environmentwith a bad mail server.

at ever 60s. We can see that for each measurement inter-
val, the app spends around 60% of the time asking for the
GPS lock. But the app never gets the GPS information; all
the data points in the figure, which incur significant power
consumption, are spent on requesting without entering the
phase of using GPS locations. Without the GPS information,
the app could not obtain weather, update UI, etc. Therefore,
the excessive power consumption spent in the asking stage
creates almost no value to the app, thus frustrating users.
Misbehavior in the Use stage. After a resource is granted,
an app may hold it for a long time. We run the buggy K-9
mail (case I) on the Motorola and Nexus phone in a network-
connected environment with a problematic mail server. Fig-
ure 2 shows that in the majority of the one-minute mea-
surement intervals, the wakelock holding time is long. But
comparing the Motorola’s measurements with the Nexus’s
(not shown due to space constraint), the absolute holding
time and frequency of abnormal intervals differ by 2×, be-
cause of the variance in the ecosystems and hardware. In
addition, several normal apps in the test phones (e.g., Pan-
dora, Transdroid, Flym) also incur long wakelock holding
time.
Therefore, a long absolute holding time for a resource

could be merely an artifact of variations in different mobile
systems or legitimate heavy resource usage. Using it as a
classifier can flag a normal app as misbehaving. Real energy
misbehavior happens when an app holds a resource for long
but does not actively utilize the resource. For the wakelock
resource (which instructs the CPU to stay active), it implies
that the CPU usage would be lower than the wakelock hold-
ing period. Figure 2 shows that in the buggy K-9 mail case,
CPU usage is much smaller (mostly 0) than the long wake-
lock hold time. This ultralow utilization (< 1%) pattern is
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Figure 3. Wakelock holding time and ratio of CPU usage to
wakelock time for the buggy Kontalk app on two phones.
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Figure 4.Wakelock holding time and CPU usage of buggy
K-9 mail in a network-disconnected environment.

consistent across different phones and ecosystems in our ex-
periments. Figure 3 plots the measurements from the buggy
Kontalk app (case II) on Nexus and Samsung phones, which
show a similar pattern. The ultralow utilization also does
not exhibit in the tested heavily-used, normal apps.
Utilizing a resource well implies more than just the re-

source utilization ratio. A high utilization ratio does not
preclude an app from misbehaving if most of the utilized
resources are spent doing work useless to the users. The
buggy K-9 mail (case I) has a second triggering condition
that occurs in handling exceptions due to network discon-
nectivity. Figure 4 shows the results of running K-9 on Pixel
XL under this condition. We can see that, compared to the
results in a connected environment with a problematic mail
server (Figure 2), the wakelock time is on average 4 times
higher. The ratio of CPU usage over wakelock time is also
much higher, even exceeding 100%. From utilization point of
view, the results indicate that the CPU awake time K-9 mail
requests is highly utilized. But from the runtime logs of K-9
mail, the app is stuck in a loop of an exceptional state doing
wakelock acquisition, network request, and error handling,
without making any progress. Therefore, utilizing a resource
should broadly represent the utility of a granted resource,
i.e., the values to users brought by the consumed resource.
Misbehavior in the Release stage. When a resource is
highly utilized and produces high utility, if the resource is
not released after a long period or is frequently re-acquired,
it can incur significant energy consumption. However, users

Table 1. Four types of energy misbehavior. ✓(✗) means the
behavior can (not) occur for this resource. ✓∗: the behavior
has a different semantic for this resource.

Resource Ask Use Release
FAB LHB LUB EUB Normal

CPU, Screen
✗ ✓ ✓ ✓ ✓Wi-Fi radio, Audio

GPS ✓ ✓∗ ✓ ✓ ✓

Sensors, Bluetooth ✗ ✓∗ ✓ ✓ ✓

may not consider this as an abnormal battery drain. For exam-
ple, a user may play Angry Birds or use Facebook extensively.
The shortened battery life is an expected outcome so it might
be undesirable to sacrifice functionality for energy savings.

2.4 Energy Misbehavior Classification
Based on the experimental analysis, Table 1 summarizes four
types of energy misbehavior in the ask-use-release model.
The first three are due to clear app defects: Frequent-Ask-
Behavior (FAB), in which the app frequently tries to acquire
the resource but rarely gets it (e.g., Figure 1), Long-Holding-
Behavior (LHB), inwhich the app is grantedwith the resource
and holds it for a long time but rarely uses the resource
(e.g., Figure 2), and Low-Utility-Behavior (LUB), in which the
app uses the granted resource for a long time to do a lot
of work but most of work is useless (e.g., Figure 4). The
fourth type is Excessive-Use-Behavior (EUB), in which the
app does a lot of useful work but incurs high overhead.
Table 1 shows how the behavior types apply to differ-

ent mobile resources. Not all resources can incur FAB. For
example, the request to wakelock or sensors can almost im-
mediately succeed. For LHB, the GPS and sensor resources
have slightly different semantic compared with CPU due to
different mechanisms. For CPU, after an app acquires the
wakelock, it can do anything including not using it. But for
GPS or sensors, an app registers a listener with the OS to
receive location updates. When the resource is acquired, the
listener is invoked. Thus the ratio of the time to collect lo-
cation information over GPS holding time is almost always
100%. We define the LHB for GPS/sensor as the utilization
of the GPS location data rather than the physical resource.
Our observations from the experiments suggest that the

unique characteristic of energymisbeheavior across different
apps and ecosystems centers around how well a resource is
utilized. In particular, when energy defects are triggered, the
resource request success ratio ( unsuccessful request time

total request time ) or uti-
lization ratio ( resource usage time

holding time ) or utility rate ( utility score
resource usage time )

quickly drops to a very low value in a short time and stays
low for a relatively long period. The three metrics respec-
tively identify FAB, LHB and LUB. The quick-drop observa-
tion also implies that, to catch energy misbehavior early on,



Table 2. Prevalence of each type of energy misbehavior in
109 real-world cases. The unknown (N/A) cases are because
the app is closed-source or the issue is not resolved yet.

Type Number of cases Pct.Bug Config. Enhance. N/A Total

FAB 10 1 1 0 12 11%
LHB 18 5 0 0 23 21%
LUB 23 4 1 0 28 26%
EUB 8 18 5 3 34 31%
N/A 0 0 0 12 12 11%

we do not need to sub-divide the lease term into very small
epochs and check each epoch. Checking the resource utility
metrics at the end of a lease term is sufficient.

2.5 Prevalence of Misbehavior Types
To understand how our observations generalize beyond the
few cases we analyzed in previous Section, we conduct a
study on 109 real-world energy misbehavior cases in 81
popular apps. All the apps and issues are collected from
open source hosting service [24, 25] or popular user fo-
rums [22, 31]. We study the root cause of each case based on
the comments and source code. To understand the severity
of each case, we classify the root causes into bug, configura-
tion/policy and enhancement. Bug means the energy waste
is caused by a software defect; configuration means develop-
ers made an intentional choice to trade energy efficiency for
other properties (e.g., accuracy); Enhancement means some
optimization that developers could add. Bug usually has high
severity and priority for developers to fix. Table 2 shows the
distribution of different energy misbehavior types.

Finding 1: All four types of misbehavior are prevalent. FAB,
LHB and LUB together occupy 58% of the studied cases while
EUB occupies 31% of the cases.

Finding 2: The majority (80%) of FAB, LHB and LUB due to
clear programming mistakes (Bug), while the majority (77%)
of EUB are due to design trade-off (non-Bug).

Based on these two findings, we believe that the EUB is
the grey area between normal behavior and misbehavior,
and the first three classes should be the primary target for a
runtime mitigation mechanism to be acceptable to users.

3 Lease Abstraction for Mobile System
3.1 Abstraction
In existing mobile OSes, when an app requests a resource, the
OS performs an initial sanity check; if the check passes, the
app’s right to hold the resource persists indefinitely unless
the app explicitly renounces it. This ask-use-release model as-
sumes that apps are capable of efficientlymanaging resources
throughout the resource lifetime, which is problematic.

ACTIVE

INACTIVE

DEFERRED

EXPIRE

Resource 

re-acquire or use

Resource 
not held

End of term

Resource held 
&  past terms 
FAB/LUB/LHB

End of delay

Resource held 
& past terms normal

DEAD

Resource 
deallocated

Figure 5. Lease state transition.

LeaseOS explicitly manages the resource rights by intro-
ducing leases. A lease essentially grants an app the rights to
request and use a specific resource instance (in the form of
a kernel object). This right is honored for a period of time,
the lease term. In the current mobile OS scheme, an app ac-
cesses the kernel object through a bound wrapper in the app
address space. With LeaseOS, a lease is created when an app
first accesses the kernel object, and is destroyed when the
corresponding kernel object is dead. A lease can last for mul-
tiple terms, t1, . . . , tn . An app can hold multiple leases at the
same time, each uniquely identifiable with a lease descriptor.
During a lease term, ti , the lease holder possesses the

right to access the resource instance and does not require
approvals from the OS. At the end of ti , the OS decides
whether to renew (extend) the lease. In other words, a lease
in LeaseOS represents a timed capability. A lease term can
range from zero to infinity. A zero-length term means every
access needs to be checked by the OS. A lease with infinity
termmeans the OS will not do any check after the resource is
granted to the app, which essentially degrades to the existing
ask-use-release model.

3.2 Lease States
In distributed systems, a lease has two simple states: the
active state when the lease is created or renewed, and the
expired state when the term ends. We adapt leases for effi-
cient mobile resource management. The resulted lease states
and transitions are slightly more complex (Figure 5). When
a lease term ends, if the app still holds the resource, the
resource utility metrics (Section 2.4) in the past term are
checked. For normal behavior, the lease will be immediately
extended with a new term and switch to the active state
again. LeaseOS introduces a new deferred state. If the behav-
ior is one of the three misbehavior (FAB, LHB, LUB), the lease
enters the deferred state in which the lease will be extended
but with a delay interval τ . During τ , the capability and re-
source associated with this lease is temporarily revoked to
reduce wasteful energy consumption. After τ , the capability
and resource is restored and the lease transits to active state
again. The deferred state essentially is a controller to slow
down low-utility app executions (Section 4.6)

If, when the lease term is expired, the resource is no longer
held, i.e., the app calls resource release at some point in the
term, the lease transits to the inactive state. When the lease
is inactive, if the app tries to re-acquire or use the resource



public class ServiceRotationControlService {    
+  ClickUtility utility = new ClickUtility();
+  class ClickUtility implements UtilityCounter {
+    public List<OrientationButtonOverlay.Event> events;
+
+    @Override
+    public float getScore() {
+      if (events == null || events.size() == 0)
+        return 50.0;
+      int click = 0;
+      int rotation = 0;
+      for (OrientationButtonOverlay.Event e : events) {
+        rotation++;
+        if (e.click == true)
+          click++;
+      }
+      return 100.0 * click / rotation;
+    }
+  };

  @Override
  public void onCreate() {
    sensor = new PhysicalOrientationSensor();
-   sensor.enable();
+   utility.events = orientBtnOverlay.mEventList;
+   sensor.enable(utility);
  }
}

Figure 6. Custom utility counter in app TapAndTurn.

with an expired lease, the access requires a check with the OS
who will make a renewal decision. When the lease-backed
resource is fully deallocated, the lease enters the dead state.
A dead lease can no longer be renewed and will be cleaned.

By regularly examining each term, and revoking under-
utilized resources temporarily for τ , the energy waste is
reduced without significantly impairing app utilities. More-
over, when an app only under-utilizes resource for a limited
period, and can later efficiently use the resource, the app has
a chance of getting the lease renewed and returning to nor-
mal behavior. This continuous examine-renew model differs
LeaseOS from other simple one-shot throttling solutions.

3.3 Lease and Utility Metrics
In order to make lease decisions based on how useful an allo-
cated resource is to the app, we enhance the lease abstraction
with lease stat. Each lease term records a stat that contains
the three broad utility metrics (Section 2.4) to classify the re-
source use behavior during that term. We describe the utility
metrics for wakelock, GPS and sensor as an example.
Frequent-Ask occurs when an app frequently tries to ac-

quire the resource but rarely gets it. This could occur for
GPS in an environment with poor signals, but not for wake-
lock or sensor. The metrics include the total request time
and the request duration with failed GPS lock. If the request
is frequent or long but the success ratio is lower than a
threshold, an FAB arises. Long-Holding happens when the
app is granted with the resource and holds it for long but
rarely uses it. For wakelock, the ratio of CPU over wakelock
holding time represents the utilization. For GPS and sensor,
because the app-supplied listener is always invoked, the ra-
tio of the lifetime of the app Activity bound to the listener

Location

Service

App

Lease 

Manager

…PowerManager 

Service

Lease Proxy Lease Proxy

kernel objects kernel objects

Lease Table

Lease Stats

resource 
descriptors

normal API call (IPC)

request, notify (IPC)

interpose, check (local op)

lease descriptors

events

Figure 7. Architecture of LeaseOS.

over the lifetime of the listener is a more appropriate utiliza-
tion metric in this case. Low-Utility behavior refers to the
utilization rate of a granted resource is high but most of the
work is of little value. To quantify the usefulness, we use a
utility score of 0 to 100. If the score is less than a threshold,
a LUB occurs. While utility score is often app-specific, it is
possible to use some conservative heuristics to determine a
generic utility. In particular, we use the frequency of severe
exceptions raised in apps for the low utility of wakelock, the
distance moved for the utility of GPS, and the UI updates
and user interactions with the apps as high utility.

In addition to generic utility, LeaseOS provides an optional
simple callback interface, IUtilityCounter, for apps to pro-
vide custom utility. Figure 6 shows how a screen control app,
TapAndTurn, can implement the interface. The app provides
an icon for users to control screen rotation. If the orientation
sensor detects a change in direction, an icon will appear on
the screen for users to click. The developer may record the
number of times that the icon occurs and the number of clicks
on that icon. Then she can implement IUtilityCounter by
returning the ratio of the clicks over the icon occurrences,
multiplied by 100. For a fitness tracking app, the custom
utility function could be the amount of tracking data written
to the database in a period, normalized to 0–100. The custom
utility is only taken as a hint when the generic utility is not
too low to prevent abuse of this function.

4 Design of LeaseOS
LeaseOS is a runtime solution to mitigate energy defects
in mobile apps. Specifically, LeaseOS targets addressing the
Frequent-Ask, Long-Holding, and Low-Utility misbehavior in
the ask-use-release model (Section 2.4). Addressing Excessive-
Use is a non-goal. We make this design decision because FAB,
LUB or LHB is clear energymisbehavior due to programming
mistakes. EUB, on the other hand, is caused by heavy use
of resources, which is often an intentional trade-off and is
controversial to judge as misbehavior.



Table 3. LeaseOS interfaces for lease proxies. setUtility is exposed to apps.

Interface Description

long create(in ResourceType rtype, int uid) create a lease for a resource for app with uid
bool check(long leaseId) check whether the lease is active or not
bool renew(long leaseId) renew the lease
bool remove(long leaseId) remove the lease

void noteEvent(long leaseId, in LeaseEvent event) report an event about a resource backed by lease with id leaseId

void setUtility(int type, in IUtilityCounter counter) register a custom utility function to be referenced

bool registerProxy(int type, ILeaseProxy proxy); register a lease proxy with the lease manager
bool unregisterProxy(ILeaseProxy proxy); unregister a lease proxy with the lease manager

4.1 Overview
Figure 7 shows the architecture of LeaseOS. A system com-
ponent, Lease Manager, manages all the leases in the system.
The lease manager handles lease related operations such as
creation and transition of lease states. In order to make lease
decisions, the lease manager also keeps track of key lease
stat measuring the utility of resources associated with a lease.
Since mobile apps are latency-sensitive, the lease manage-
ment operations should avoid incurring excessive overheads.
For this purpose, LeaseOS designs a few light-weight lease
proxies. Each lease proxy manages one type of constrained
mobile resource, e.g., wakelock, GPS. The proxy is placed
inside the OS subsystem managing that type of resource and
interacts with the lease manager on behalf of the apps.

4.2 Achieving Transparent Lease Integration
Under current mobile OSes, apps and OS subsystems live in
different address spaces. When an app successfully gets a
resource (e.g., wakelock) from the subsystem managing that
resource, it obtains a wrapper on a resource descriptor, which
can be used locally in the app’s address space. In Android,
the resource descriptor is usually a unique client IPC token,
an IBinder object. The wrapping is provided by the system
package, e.g., android.os.PowerManager. The real resource
is a kernel object in that subsystem, e.g., an IBinder IPC
token that is associated with the app’s token. Since the app
resource descriptor and the kernel object has a one-to-one
mapping, invoking a resource operation on the descriptor
translates to making an IPC to the OS subsystem, which
manipulates the corresponding kernel object.
With LeaseOS, apps still make resource requests to the

subsystems via IPC and the resource descriptors as usual.
A lease proxy transparently makes lease requests on behalf
of the apps to the lease manager. It maintains a mapping
between the kernel object corresponding to the app resource
and the lease descriptor returned by the lease manager. Be-
cause a lease proxy lives in the same address space as the
subsystem, it can directly manipulate the kernel object to
apply operations on resources as instructed by the lease man-
ager, without going through or manipulating the resource

descriptors in the app address space. In this way, leases are
seamlessly integrated into the systems without rewriting
apps. Therefore, LeaseOS is compatible with existing apps.

4.3 Lease Manager
Lease manager creates, expires, renews and removes leases
for resources. When an app is granted with access to a re-
source instance for the first time, a lease is created. The lease
is assigned with a unique lease descriptor and an initial term.
The app is recorded as the lease holder. The lease manager
maintains a table that contains all the leases created in the
entire system for different resources granted to all apps.

For each lease term assigned, the lease manager schedules
a check after the term expires. LeaseOSmakes lease decisions
based on app resource usage behavior. At the end of each
lease term, the lease manager calculates the resource success
ratio, utilization and utility stats. With the resource stats, the
lease manager judges the type of resource usage behavior
(Section 2.4) in the past lease term. For each lease, a bounded
history of the stats and behavior types for the past terms is
kept in the lease manager. Given the behavior types for the
current term and last few terms, the lease manager makes a
decision to renew or temporarily expire a lease.

Lease manager provides a set of APIs to the lease proxies.
Table 3 shows the interfaces. A proxy calls registerProxy to
register with lease manager to enable lease management for
a type of resource. Lease proxies invoke noteEvent to notify
lease manager about important event about the kernel object,
e.g., the app calls release on the kernel object or the app
attempts to re-acquire the object. These events will be ana-
lyzed at the end of a term to calculate stat like the resource
holding time. In LeaseOS, lease expiration and renewal deci-
sions are made by the lease manager. Lease proxies provide
an onExpire and onRenew callback to be invoked by the lease
manager. When a lease proxy detects an app attempting to
use a resource with an expired lease, the proxy will invoke
renew API to request lease extension. When the leaseholder
(an app) dies, system services from which the holder have
requested resources will clean up the kernel objects. Under



this condition, the lease proxies also need to notify the lease
manager to clean up all the related leases by invoking remove.

4.4 Lease Proxy
Lease proxies are light-weight delegates of the lease man-
ager. They directly interpose and check the resources (kernel
objects) backed by leases. For each lease created by the man-
ager, the lease proxy stores the mapping between the kernel
object and the lease descriptor so that when the manager
makes decisions about a lease, the proxy knows which kernel
object to apply the operation. The proxies do not store or
manage the lease content or stats. They cache the state for a
lease for efficient checking. Lease proxies communicate with
lease manager using lease descriptors. The communication
between a lease proxy and lease manager is bi-directional.
When a lease proxy starts, it will register with the manager,
create and keep an IPC channel for communication.

If an app makes certain resource request operations to the
proxy’s host subsystem, the proxy may invoke an API of the
leasemanager such as create via the IPC channel. In addition,
the lease proxy will provide several required callbacks to the
lease manager, such as onExpire and onRenew. When a lease
is expired or renewed, the lease manager will invoke these
registered callbacks. Within these callbacks, the lease proxy
will update its local lease descriptor table, the cached lease
state and the state of its host subsystem to reflect the change.
For instance, when an app invokes acquire on a wakelock
instance, the power manager subsystem essentially adds the
kernel object, IBinder, into an internal array, which will be
checked to determine if the CPU should enter deep sleep
mode. In this case, the lease proxy in the power manager
needs to remove the IBinder from the array inside onExpire.

4.5 Lease Mechanism from Apps’ Perspective
With lease proxies, enabling lease-based resource manage-
ment does not require any app code changes unless apps
choose to implement the optional custom utility function.
Figure 8 uses a real-world app (K-9 mail) as an example to
show the lease mechanism from the apps’ perspective.

0 creates a unique resource descriptor wkLock, with the
power manager OS subsystem creating a corresponding
unique kernel object (not shown). When ➊ is executed for
the first time, a new lease is created behind the scene by the
proxy. Before ➍ is reached, multiple lease terms may have
passed. In the normal scenario, in each lease term the app
does some useful work with the resource, so the lease will be
immediately renewed when the term expires. When the lease
term containing ➍ finishes, the lease manager finds that the
wakelock resource is no longer held, so the lease transits to
the inactive state. Some time later, function start is executed
again. Upon ➊, the lease capability immediately goes back
to active. When the pushing service is eventually stopped,
the lease proxy death recipient immediately requests the
manager to remove the lease. During this process, even if

public class EasPusher {

  TracingWakeLock wkLock = pm.newWakeLock();

  public void start() { // periodically executed

    wkLock.acquire();

    while (!stop) {

      try {

        Serializer s = new Serializer();

        for (String folderName : folderNames)

          s.start(folderName);

        s.end().done();

        HttpResponse resp = sendHttpClientPost();

        ...

      } catch (Exception e) {

      }

    }

    wkLock.release();

  }

}

1
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Figure 8. Lease mechanism from an app’s perspective.

the absolute holding time between ➊ and ➍ is long, the app
will behave the same as without lease mechanism.

The app may exhibit energy misbehavior in some lease
term. For example, when the network is disconnected, it will
get stuck in an exception loop due to ➌ while holding the
wakelock for a long time. In this scenario, the lease mecha-
nism will apply a penalty to the app by deferring the renewal
of the next lease term for a penalty period of τ . During τ ,
the kernel resource is temporarily revoked to reduce wasted
energy but is restored after τ . If the network re-connects, the
energy misbehavior will be gone. So are the lease terms re-
newed again. Compared to the one-shot throttling, the lease
mechanism can adapt to temporary energy misbehavior.

4.6 Implication of Deferring Lease Term Renewal
The semantic of the lease deferred state is that the capability
and resource is temporarily revoked for τ . This revocation
by mutating the state of the OS subsystem with the kernel
object. But the resource descriptor in the app address space is
still valid to be used by apps to make IPCs during τ . The app
logic is not affected either. For acquire IPC, the OS subsystem
essentially pretends it succeeds. For release IPC, the event
will be recorded by the proxy. If no release occurs during τ ,
the temporarily revoked resource will be restored after τ .
The main penalty incurred to apps is that the low-utility

execution may be slowed down. Take Figure 8 as an example.
Suppose when the code execution reaches ➋, the lease for
wkLock enters the deferred state. The lease proxy will remove
the IBinder object from an internal array in the power man-
ager service, without modifying the wkLock descriptor. If this
happens to be the last IBinder object in the array, the phone
enters deep sleep mode. So the execution is paused and will
be resumed seamlessly later. If the paused execution involves
network operation (e.g., ➌), when the execution resumes,
an I/O exception due to timeout might occur. But the app is
already required to handle such exception at compile time.
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Figure 9. Resource holding times (s) of a test buggy app with
Long-Holding misbehavior under different lease terms.

Therefore, the lease deferral does not cause unknown ex-
ceptions to apps. For listener-based resources like GPS and
sensor, the deferred state means the app listener callback will
not be invoked (or less frequently). Slowing down low-utility
execution usually does not cause undesirable impact to users
because it produces little value anyway (e.g., non-stop retry
of failed ➌).

5 Lease Policy
5.1 Choosing the Lease Term and Deferral Interval
For a lease-based mechanism, the choice of the lease term
is important. In the original distributed cache scenario, the
lease term affects the trade-offs between lease renewal over-
head and the extra delays due to false sharing. In our case, the
false sharing trade-off does not exist because most energy-
consuming mobile resources are shared in a subscription
style that does not require coordination. But lease term, t , as
well as the deferral interval, τ , that we introduced, influence
the effectiveness on mitigating energy misbehavior and im-
pact to legitimate resource usage. A short lease term allows
the lease manager to quickly detect energy misbehavior. But
it can incur high lease accounting overhead. A short deferral
interval can reduce the cost of misjudgment (slowdown of
legitimate high-utility executions). But it has limited effect
on reducing wasteful energy consumption.
We analyze how lease term impacts the effectiveness of

mitigating misbehavior. Suppose that an app starts to exhibit
the Long-Holding misbehavior at the beginning of ith lease
term, and at the end of the jth lease term, LeaseOS detects the
Long-Holding pattern. The resource holding time, H = n × t ,
and total time, T = (n × t) + τ , where n = j − i + 1. So the
reduction ratio of wasted energy consumption, r ,

r =
H

T
=

n × t

(n × t) + τ
=

1
1 + λ

,where λ =
τ

n × t
=

avд(τ )

lease term
This implies that if an app holds non-utilized resource for

a time longer than that the lease term, then for the Long-
Holding misbehavior, the larger λ is, the more effective lease
mechanisms can help reduce wasteful energy consumption.
In addition, the absolute lease term is not the deciding factor.
The ratio it has with the average deferral interval is the key.

To validate the above analysis, we wrote a test app that
simulates the Long-Holding misbehavior based on a real-
world buggy app (Torch). The test app acquires a wakelock
and holds the wakelock for 30 minutes without doing any-
thing and never releases it. For experiment purpose, the lease
term is set to be 30s, 1min, 3min and∞ (no-lease). The defer-
ral interval is set to be 30s, which means the λ is 1, 0.5, 1/6,
respectively. Each experiment is run for 30 minutes. During
the experiment period, the lease states alternate between
ACTIVE and DEFERRED state (i.e., n = 1). Figure 9 (a) shows
the result. We can see that if the lease term is 30s, the app
only holds wakelock for about 15 minutes, which is about
half of the holding time without lease mechanisms. When
the lease term increases to 1min, the holding time increases
to 20 minutes and when the lease term is 3min, the holding
time is about 26 minutes. We repeat the experiment with the
same three terms but keep λ 1. Figure 9 (b) shows the result.
We can see that the wakelock holding time under different
lease terms are almost the same. This confirms our analysis
conclusion. The conclusion above can also be adapted for
Frequent-Ask and Low-Utility misbehavior since their lease
state transitions are the same. Based on our analysis and
empirical experiments, LeaseOS sets the default lease term
as 5 seconds and the default deferral interval as 25 seconds.

5.2 Optimizing for The Common Case
The goal of introducing lease mechanism to mobile systems
is to reduce the wasteful energy consumption due to some
misbehaving apps. For many users, the majority of the apps
in their devices use resources in a relatively reasonable way.
Even for the misbehaving app, the energy misbehavior is
often intermittent (e.g., when the network connectivity or the
GPS signal is weak). This creates an opportunity for LeaseOS
to optimize for the common case, normal resource usage
behavior, with adaptive lease terms. In particular, if an app
has been using resources efficiently, LeaseOS can increase
the next lease term. An increased lease term will reduce
the performance overhead, as well as unnecessary deferral
for transient misbehavior. Therefore, the lease manager will
increase the lease term to 1 minute if the past 12 terms (1
minute) are normal, and further increase it to 5 minutes if
the 120 terms are normal. It will revert to 5-second lease
term if any term in the look-back window has misbehavior.

6 Implementation
We implemented LeaseOS on top of Android 7.1.2, with 9,100
lines of code changes made to the core Android framework.
Much of the logic for different lease proxies are the same,
such as communicating with lease manager, maintaining
mappings of kernel object and lease descriptor. This common
logic is provided via a generic lease proxy class. Enabling
lease management for a new type of resource therefore does
not require significant efforts. It is done by inheriting from



Table 4. Average latency of major lease operations inms .

Create Check (Acc) Check (Rej) Update

0.357 0.498 0.388 4.79

this proxy, implementing a few proxy callbacks, and inserting
some hooks in the system service. Our modifications to each
enhanced system service are only around 200 lines of code.

One implementation challenge is to track exceptions from
apps for generic lease utility. These exceptions are handled
by the Android libcore. The libcore itself cannot directly use
system APIs to pass the exception information to Android
framework. To address the issue, we define a new class in the
libcore ExceptionNoteHandler with a get and set interface.
During the runtime initialization of an app process within
the system service, we set a global handler that will notify
the lease manager service when called. When an app throws
an exception, the libcore will check if the handler is set and
if so the handler will be invoked.

7 Evaluation
This Section evaluates LeaseOS. We measure how effective
is LeaseOS in mitigating the Frequent-Ask, Long-Holding and
Low-Utility energy misbehavior (Section 2.4), by running
buggy apps in LeaseOS and comparing the power consump-
tion with running them in the vanilla Android. We also mea-
sure LeaseOS’s usability impact and performance overhead.

7.1 Experiment Setup
The main experiments are performed on a Google Pixel XL
phone running LeaseOS. The device has a 2.15GHz quad-core
CPU, 32 GB storage, 4 GB RAM and a 3,450 mAh battery. To
measure the effectiveness of mitigating energy misbehavior,
we need to obtain app-level power consumption. This is done
with the high-accuracy Qualcomm Trepn profiler [29] and
the Android built-in power profiler. For measuring system-
wide power consumption, we use the Monsoon hardware
power monitor. Because the battery of Pixel phone is dif-
ficult to integrate with Monsoon power monitor, we use a
Nexus 5X phone as a substitute to set up the measurement
(Figure 10). To make sure the baseline Android system has
the same app ecosystem, we provide a flag in LeaseOS to
completely turn off the lease service. The initial lease term
is set to be 5 seconds with the default deferral interval being
25 seconds.

7.2 Micro Benchmark
We first conduct a micro benchmark on the performance of
major lease operations. We write a test app that acquires
and releases different resources 20 times. Then we collect
the latency for each lease operation. Table 4 shows the re-
sults. We can see that the operations are fast, close to the
Android IPC latency. As a comparison, we measured the
latency for an app to make a resource acquire IPC without

Figure 10. Nexus 5X with Monsoon power monitor.
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Figure 11. Number of active leases in one hour period

lease is around 2ms . The lease update operation is slightly
higher than creation and check because it needs to calculate
the utility metrics. But lease update does not force pause to
app execution flow. The overall latency impact to apps is
small, especially since lease operations are not in the app
critical paths most of the times.
We also measure the lease activities under normal usage

scenario. During the experiment period, we actively use pop-
ular apps including playing games, browsing social network,
reading news and listening to music for 30 minutes and then
leave it untouched for another 30 minutes. Figure 11 plots
the number of active leases over time. It shows the active
leases are moderate and match user activities. In total, 160
leases are created. Most leases are short-lived, with a median
active period of 5 seconds. But the max period is 18 minutes.
The average number of lease terms are 4, and max 52.

7.3 Mitigate Energy Misbehavior
We reproduced 20 energy bug cases representing different
misbehavior types in popular real-world apps. 5 of the cases
are used in the early study (Section 2).We compare the power
consumption of running these buggy apps on the vanilla
Android (w/o lease) with running them under LeaseOS (w/
lease). The rise of app energy misbehavior has motivated
several recent works. Starting from 6.0, Android introduces
the Doze mode [28] which defers app background CPU and
network activity when the device is unused for a long time.
Amplify [11] and DefDroid [45] throttle excessive requests.
We compare the effectiveness of LeaseOS with Doze and the
simple throttling approach (with the throttling settings from
DefDroid [45]). Each experiment is run for 30 minutes, dur-
ing which the power consumption is sampled every 100ms .
Table 5 shows the averaged power consumption under

different solutions. We can see that LeaseOS can significantly
reduce the wasted power consumption for all cases, achiev-
ing an average reduction ratio of 92%. The default Doze is



Table 5. Evaluate real-world apps with Frequent-Ask, Long-Holding and Low-Utility misbehavior. *: the default Doze mode is
too conservative to be triggered for most cases. We made it aggressive by forcing it to take effect at each experiment.

App Category Res. Behavior Power (mW) Reduction Percent (%)

w/o lease w/ lease Doze∗ DefDroid LeaseOS Doze DefDroid

Facebook [5] social CPU LHB 100.62 1.93 18.92 12.68 98.08 81.19 87.40
Torch [7] tool CPU LHB 81.54 1.30 19.26 14.39 98.41 76.38 82.35
Kontalk [13] messaging CPU LHB 29.41 0.39 16.84 15.99 98.67 42.74 45.63
K-9 [6] mail CPU LUB 890.35 81.62 195.2 136.14 90.83 78.08 84.71
ServalMesh [10] tool CPU LUB 134.27 1.37 30.54 14.88 98.98 77.25 88.92
TextSecure [18] messaging CPU LUB 81.62 1.198 18.78 16.78 98.53 76.99 79.44
ConnectBot [4] tool screen LHB 576.52 23.23 573.23 115.56 95.97 0.57 79.96
Standup Timer [2] productivity screen LHB 569.10 13.26 544.46 61.82 97.67 4.33 89.14
ConnectBot [1] tool Wi-Fi LHB 17.08 0.78 3.21 2.57 95.43 81.21 84.95
BetterWeather [15] widget GPS FAB 115.36 2.59 20.38 39.97 97.75 82.33 65.35
WHERE travel GPS FAB 126.28 23.33 20.42 69.62 81.52 83.83 44.87
MozStumbler [16] service GPS LHB 122.43 67.53 36.48 62.7 44.84 70.20 48.79
OSMTracker navigation GPS LHB 121.51 8.39 20.52 73.34 93.10 83.11 39.64
GPSLogger [8] travel GPS LHB 118.25 4.33 21.98 70.7 96.34 81.41 40.21
BostonBusMap [3] travel GPS LHB 115.5 3.97 19.5 71.09 96.56 83.12 38.45
AIMSCID [12] service GPS LUB 119.43 4.50 23.91 73.31 96.23 79.98 38.62
OpenScienceMap [14] navigation GPS LUB 123.97 3.40 19.91 91.25 97.26 83.94 26.39
OpenGPSTracker [9] travel GPS LUB 360.25 1.32 19.91 237.41 99.63 94.47 34.10
TapAndTurn [20] tool sensor LUB 11.72 1.87 3.95 4.41 84.04 66.30 62.37
Riot [21] messaging sensor LUB 19.17 1.43 6.64 3.93 92.54 65.36 79.50

Average: 92.62 69.64 62.04

very conservative (e.g., after the phone is idle for a long time
and there is no angle change in 4 minutes), as it is a system-
wide mode that applies to all apps. It is triggered for only 8
cases. To evaluate whether relaxing its triggering condition
can help, we force it to take effect at the beginning of each
experiment through adb command line. Table 5 shows that
even though the aggressive triggering helps, it is still much
less effective than LeaseOS because any non-trivial activity
can interrupt the deferral. Similarly, LeaseOS significantly
outperforms the blind throttling solution. This is because the
mechanism inherently cannot distinguish legitimate behav-
ior from misbehavior so its settings have to be conservative.
LeaseOS continuously analyzes an app’s resource usage and
utility at the end of each lease term and can take proactive
action to prevent wasteful asking or holding of resources.

7.4 Usability Impact
LeaseOS’s high effectiveness in mitigating app energy misbe-
havior does not come at a price of reduced app usability. For
all of the cases we evaluated, LeaseOS did not introduce any
negative usability impact. This is because LeaseOS by design
optimizes for apps’ utility. The three types of misbehavior
we target—Frequent-Ask (but rarely gets it), Long-Holding
(but do little work with it), and Low-Utility (but mostly do
useless work)—all contribute little to the usability of apps. As
an anecdotal user experience, the primary author has been

actively using the Google Pixel phone running LeaseOS for
more than 10 days and has not experienced any visible side
effect or sluggish app interactions due to leases.

To further demonstrate the importance of LeaseOS’s utili-
tarian approach, we compare how normal background apps
perform under LeaseOS with running in a time-based throt-
tling system (essentially leases with only a single term). We
choose three representative normal background apps: 1) Run-
Keeper that tracks fitness activities with location and sensor
recording in the background; 2) Spotify that streams music
in the background; 3) Haven that continuously monitors in-
truders using sensors and cameras. For all of the three apps,
LeaseOS would continuously renew leases without introduc-
ing any interruption, because the resources are utilized well.
In comparison, under pure throttling scheme, all of the three
apps experienced some disruption, e.g., fitness tracking, mu-
sic streaming or monitoring stopped. Interestingly, we also
found that the profiling tool we use, Trepn profiler, also stops
collecting data, whereas it functions well under LeaseOS.

7.5 Sensitivity to Lease Policy
The effectiveness of LeaseOS depends the choice of lease
term and deferral interval. For single misbehavior, Section 5.1
analyzes the theoretical impact of the key parameter, λ. A
real-world app misbehavior might occur intermittently (e.g.,
Figure 2). The impact of λ for such intermittent misbehavior
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cannot be easily captured with a formula. We wrote a test
app to simulate the impact. The test app generates 1000 mis-
behavior slices and 1000 normal slices, each with a random
length from 0 to 10min. The combination of the slices is a
test case. We generate 1000 test cases and calculate their re-
duction ratio under different λ from 1 to 5. Figure 12 shows
that the larger λ is, the higher reduction ratio. But a larger λ
also increases the probability of misjudging a normal behav-
ior as low-utility and the expected penalty (slow-down for
legitimate app execution).

7.6 Overhead
We measure the system power consumption overhead of
LeaseOS with the Monsoon power monitor. We evaluate
five settings: 1) idle with only stock apps and screen off; 2)
no user interactions but with screen on and a number of
popular apps installed; 3) use YouTube; 4) use 10 apps in
turn; 5) use 30 apps in turn. Each experiment is run 8 times.
For experiments involving using apps, we try to repeat the
user interactions across runs with best efforts. Figure 13
shows the average results with error bars for LeaseOS and
the vanilla Android. We can see that LeaseOS introduces
negligible overhead (< 1%), with a slightly larger variance.
The low overhead is a result of the lightweight lease proxies
and the adaptive lease term optimizations.
As an end-to-end test, we measure the energy consump-

tion with one buggy GPS app in the system. In the experi-
ment, we play music for 2 hours, watch YouTube for 1 hour,
browse for 30 mins and keep the phone on standby. The
result shows that Android w/o lease runs out of battery after
around 12 hours, while LeaseOS lasts for 15 hours.

We also measure the impact of lease to end-to-end app la-
tency. We choose three representative apps with interaction
flows (e.g., button click to UI updates) that involve resource
backed by the lease. Figure 14 plots the latency results, which
show that lease introduces very small latency overhead.

8 Discussion
While our evaluation shows lease is an effective mechanism
in addressing real-world energy misbehavior, there are sev-
eral limitations that we plan to address as our future work.
Our utility metrics are currently defined and measured

based on the assumption that the energy consumption is

proportional to the duration of resource usage. To account
for complex hardware behavior such as Dynamic Voltage
and Frequency Scaling (DVFS), we need to adjust the metrics
with device state factors.

As a system-level solution, LeaseOS does not understand
the semantics of apps and uses a set of generic utility met-
rics instead. The lack of semantic information could lead to
potential misclassification for certain apps. Writing custom
utility functions in these cases becomes necessary. But we
think this effort is still acceptable compared to the efforts
needed for energy-efficient programming.
LeaseOS also cannot draw a clear line between normal

usage and the excessive usage because they both appear to
the lease manager as having high utility. We plan to investi-
gate inferring app and user intentions as part of the utility
measurement to tackle the Excessive-Use behavior.

The lease policies and parameters are statically set based
on the offline analysis (§3.3 and §5.1) There may be new
misbehavior patterns that cannot be addressed by the current
misbehavior judging policies. We plan to adjust the policies
dynamically based on app usage history in the future.

9 Related Work
OS Support for Energy Efficiency. Resource-constrained
mobile devices require special OS support. A plenty of sys-
tems [33, 42, 48, 49, 61, 62, 64, 68] are designed for efficient
mobile resource management. To name a few, Anand et
al. [33] propose OS interfaces to expose “ghost hints” from ap-
plications to devices; ECOSystem [68] proposes the unified
currentcy model to provide fair energy allocations; Joule-
Guard [42] uses control theory to provide energy guarantees
for approximate applications. These systems aims to opti-
mize energy under normal conditions while our system’s
goal is to reduce energy waste due to defects in apps.

Cinder [61] proposes new abstractions—reserves and taps—
to explicitly control energy consumption. The reserve in
Cinder and our proposed lease abstraction both describe the
right to use a resource. But Cinder treats the reserve as an
allotment; thus, an application granted with a reserve can
run as long as the allotment is not exceeded, even if the
energy is wasted. Our lease describes rights to fine-grained
kernel resources in the temporal dimension. App granted



with a lease can continue to use the resource as long it makes
efficient use of it.
Energy-Aware Adaptation. Building feedback loop into
mobile system is a well-studied approach to achieve energy
efficiency (e.g., Odyssey [39, 54], Grace OS [67], Proportion
allocator [65], SPECTR [59], CALOREE [53]). These solu-
tions typically work by monitoring resources, energy and
environment changes to adapt and tune application behavior
accordingly. They assume the mobile system and applica-
tions are collaborative. We target the scenarios where apps
can misbehave, and use utilitarian leases to reward apps that
can efficiently use resources.
Runtime Mitigation. Several runtime solutions for reduc-
ing energy consumption of background apps exist [11, 45,
52, 63]. Among them, Doze [28] and DefDroid [45] are most
closely related to LeaseOS. Doze extends battery life by defer-
ring background CPU and network activity when the device
is not used for a long time. DefDroid applies fine-grained
throttling on disruptive apps when certain resources are held
for too long. Such one-shot deferral or throttling approach
based on holding time cannot distinguish misbehavior from
legitimate heavy resource usage. Therefore they can easily
overreact to normal apps. By using lease with the utility
metrics, LeaseOS inherently incurs little negative usability
impact. The continuous examine-renew also allows LeaseOS
to adapt well for intermittent energy misbehavior (e.g., due
to environment conditions).
Energy Bug Detection and Diagnosis.App energy misbe-
havior is a common issue that frustrates many users. Pathak
et al. [58] first study the code patterns of no-sleep energy
bugs and propose static analysis solution to detect these
bugs. A number of subsequent projects have improved the
app bug detection techniques [34, 43, 44, 46], fine-grained
power profiling [36, 37, 56, 57], app testing [51], and diag-
nosis of abnormal battery drain [50]. LeaseOS focuses on
runtime mitigation of apps with energy bugs, which is com-
plementary to these work.

10 Conclusion
With abundant apps available on the energy-constrained
mobile devices, it becomes ever more important to design re-
sourcemanagementmechanism that canmitigate app energy
misbehavior at runtime. We explore a utilitarian approach
in the design space for mobile resource management, and
propose the mobile lease abstractions. We design LeaseOS
that continuously measures the utility of app resources to
make lease decisions. Experiments show that LeaseOS can
reduce the wasteful power consumption for 20 real-world
buggy apps by 92% on average, significantly more effective
than two state-of-the-art runtime solutions. Experiments
also show that for apps that use resources heavily for legiti-
mate purpose can properly function under LeaseOS due to

its inherent utilitarian nature. LeaseOS incurs <1% power
consumption overhead.

The source code of LeaseOS is publicly available at:
https://orderlab.io/LeaseOS
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